Matthew J. Socha

Learn More
OBJECTIVE Intercellular conduction of electrical signals underlies spreading vasodilation of resistance arteries. Small- and intermediate-conductance Ca(2+)-activated K(+) channels of endothelial cells serve a dual function by initiating hyperpolarization and modulating electrical conduction. We tested the hypothesis that regulation of electrical signaling(More)
BACKGROUND AND PURPOSE Electrical conduction along endothelium of resistance vessels has not been determined independently of the influence of smooth muscle, surrounding tissue or blood. Two interrelated hypotheses were tested: (i) Intercellular conduction of electrical signals is manifest in endothelial cell (EC) tubes; and (ii) Inhibitors of gap junction(More)
OBJECTIVE To test the hypothesis that Ca(2+) responses to GPCR activation are coordinated between neighboring ECs of resistance arteries. METHODS EC tubes were freshly isolated from superior epigastric arteries of C57BL/6 mice. Intercellular coupling was tested using microinjection of propidium iodide. Following loading with fluo-4 dye, intracellular(More)
Impaired cytochrome P450 epoxygenase enzyme (Cyp2c) regulation contributes to renal damage in angiotensin salt-sensitive hypertension (ANG/HS). We hypothesized that interleukin-6 null mice (IL6-/-) would improve Cyp2c regulation and reduce renal damage in hypertensive mice fed a high salt diet. Systolic blood pressure increased to a greater extent in ANG/HS(More)
This MiniReview is focused on the nature of intercellular signalling along the endothelium that helps to co-ordinate blood flow control in vascular resistance networks. Vasodilation initiated by contracting skeletal muscle ascends from arterioles within the tissue to encompass resistance arteries upstream and thereby increase blood flow during exercise. In(More)
To study Ca(2+) signaling in the endothelium of murine feed arteries, we determined the in vitro stability of endothelial cell (EC) tubes freshly isolated from abdominal muscle feed arteries of male and female C57BL/6 mice (5-9 mo, 25-35 g). We tested the hypothesis that intracellular Ca(2+) concentration ([Ca(2+)](i)) responses to muscarinic receptor(More)
The control of blood flow by the resistance vasculature regulates the supply of oxygen and nutrients concomitant with the removal of metabolic by-products, as exemplified by exercising skeletal muscle. Endothelial cells (ECs) line the intima of all resistance vessels and serve a key role in controlling diameter (e.g. endothelium-dependent vasodilation) and,(More)
KEY POINTS Calcium signalling in endothelial cells of resistance arteries is integral to blood flow regulation. Oxidative stress and endothelial dysfunction can prevail during advanced age and we questioned how calcium signalling may be affected. Intact endothelium was freshly isolated from superior epigastric arteries of Young (∼4 months) and Old (∼24(More)
  • 1