Matthew J. Salganik

Learn More
Hit songs, books, and movies are many times more successful than average, suggesting that "the best" alternatives are qualitatively different from "the rest"; yet experts routinely fail to predict which products will succeed. We investigated this paradox experimentally, by creating an artificial "music market" in which 14,341 participants downloaded(More)
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in(More)
Respondent-driven sampling (RDS) is a network-based technique for estimating traits in hard-to-reach populations, for example, the prevalence of HIV among drug injectors. In recent years RDS has been used in more than 120 studies in more than 20 countries and by leading public health organizations, including the Centers for Disease Control and Prevention in(More)
Networks—sets of objects connected by relationships—are important in a number of fields. The study of networks has long been central to sociology, where researchers have attempted to understand the causes and consequences of the structure of relationships in large groups of people. Using insight from previous network research, Killworth et al. and McCarty(More)
Hidden populations, such as injection drug users and sex workers, are central to a number of public health problems. However, because of the nature of these groups, it is difficult to collect accurate information about them, and this difficulty complicates disease prevention efforts. A recently developed statistical approach called respondent-driven(More)
Respondent-driven sampling (RDS) is a recently introduced, and now widely used, technique for estimating disease prevalence in hidden populations. RDS data are collected through a snowball mechanism, in which current sample members recruit future sample members. In this paper we present RDS as Markov chain Monte Carlo importance sampling, and we examine the(More)
One of the many challenges hindering the global response to the human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) epidemic is the difficulty of collecting reliable information about the populations most at risk for the disease. Thus, the authors empirically assessed a promising new method for estimating the sizes of most at-risk(More)
Respondent-driven sampling (RDS) is a widely used method for sampling from hard-to-reach human populations, especially populations at higher risk for HIV. Data are collected through peer-referral over social networks. RDS has proven practical for data collection in many difficult settings and is widely used. Inference from RDS data requires many strong(More)
Sociologists often describe culture as a repertoire of shared understandings. But because the meanings that social actors attribute to symbols and actions emerge from the multiple associations they make between them, delineating collectively shared understandings is not a straightforward task. Standard quantitative sociological practice, which relies on the(More)
Individuals influence each others' decisions about cultural products such as songs, books, and movies; but to what extent can the perception of success become a "self-fulfilling prophecy"? We have explored this question experimentally by artificially inverting the true popularity of songs in an online "music market," in which 12,207 participants listened to(More)