Learn More
The function of the essential cohesin-related Smc5-Smc6 complex has remained elusive, though hypomorphic mutants have defects late in recombination, in checkpoint maintenance, and in chromosome segregation. Recombination and checkpoints are not essential for viability, and Smc5-Smc6-null mutants die in lethal mitoses. This suggests that the chromosome(More)
In eukaryotes, three pairs of structural-maintenance-of-chromosome (SMC) proteins are found in conserved multisubunit protein complexes required for chromosomal organization. Cohesin, the Smc1/3 complex, mediates sister chromatid cohesion while two condensin complexes containing Smc2/4 facilitate chromosome condensation. Smc5/6 scaffolds an essential(More)
Smc5/6 is a structural maintenance of chromosomes complex, related to the cohesin and condensin complexes. Recent studies implicate Smc5/6 as being essential for homologous recombination. Each gene is essential, but hypomorphic alleles are defective in the repair of a diverse array of lesions. A particular allele of smc6 (smc6-74) is suppressed by(More)
Vitamin A serves as a prohormone from which three classes of active metabolites are derived: the aldehydes, the carboxylic acids, and the retro-retinoids. Although these three classes are united under the rubric of signal transduction, they act by different molecular mechanisms: the 11-cis-retinaldehydes combine with opsin to form the universal visual(More)
In the fission yeast Schizosaccharomyces pombe, the protein kinase Chk1 has an essential role in transducing a delay signal to the cell cycle machinery in the presence of DNA damage. Fission yeast cells lacking the chk1 gene do not delay progression of the cell cycle in response to damage and are thus sensitive to DNA damaging agents. We have previously(More)
ATR/Rad3-like kinases promote the DNA damage checkpoint through regulating Chk1 that restrains the activation of cyclin-dependent kinases. In fission yeast, Crb2, a BRCT-domain protein that is similar to vertebrate 53BP1, plays a crucial role in establishing this checkpoint. We report here that Crb2 regulates DNA damage checkpoint through temporal and(More)
Chk1 is a protein kinase that is the effector molecule in the G2 DNA damage checkpoint. Chk1 homologues have an N-terminal kinase domain, and a C-terminal domain of approximately 200 amino acids that contains activating phosphorylation sites for the ATM/R kinases, though the mechanism of activation remains unknown. Structural studies of the human Chk1(More)
Cell cycle checkpoints are surveillance mechanisms that monitor the order, integrity, and fidelity of the major events of the cell cycle. These include growth to the appropriate cell size, the replication and integrity of the chromosomes, and their accurate segregation at mitosis. Many of these mechanisms are ancient in origin and highly conserved, and(More)
BRCT-containing protein 1 (Brc1) is a multi-BRCT (BRCA1 carboxyl terminus) domain protein in Schizosaccharomyces pombe that is required for resistance to chronic replicative stress, but whether this reflects a repair or replication defect is unknown and the subject of this study. We show that brc1Δ cells are significantly delayed in recovery from(More)
Mitosis sees a massive reorganization of cellular architecture. The microtubule cytoskeleton is reorganized to form a bipolar spindle between duplicated microtubule organizing centers, the chromosomes are condensed, attached to the spindle at their kinetochores, and, through the action of multiple molecular motors, the chromosomes are segregated into two(More)