Matthew J Anzivino

Learn More
PURPOSE Misplaced (heterotopic) cortical neurons are a common feature of developmental epilepsies. To better understand seizure disorders associated with cortical heterotopia, the sites of aberrant discharge activity were investigated in vivo and in vitro in a seizure-prone mutant rat (tish) exhibiting subcortical band heterotopia. METHODS Depth electrode(More)
OBJECT A brief period of hypothermia has recently been shown to induce delayed tolerance to ischemic brain injury. This form of tolerance is initiated several hours after hypothermic preconditioning (HPC) and persists for a few days. Hypothermia-induced tolerance could provide a means for limiting cellular injury during predictable periods of ischemia, such(More)
We have previously shown that a cell-type-specific negative-regulatory element, or silencer, acts to specifically restrict rat-growth-hormone(rGH)-promoter activity to pituitary cells. Here we report a detailed characterization of this element. The activity of the silencer is dependent on its position relative to the promoter. The negative regulatory effect(More)
Early cellular development was studied in the neocortex of the tish rat. This neurological mutant is seizure-prone and displays cortical heterotopia similar to those observed in certain epileptic patients. The present study demonstrates that a single cortical preplate is formed in a typical superficial position of the developing tish neocortex. In contrast,(More)
Malformations of the neocortex are a common cause of human epilepsy; however, the critical issue of how disturbances in cortical organization render neurons epileptogenic remains controversial. The present study addressed this issue by studying inhibitory structure and function before seizure onset in the telencephalic internal structural heterotopia (tish)(More)
OBJECT Ischemic neuronal damage associated with neurological and other types of surgery can have severe consequences for functional recovery after surgery. Hypothermia administered during and/or after ischemia has proved to be clinically beneficial and its effects often rival or exceed those of other therapeutic strategies. In the present study the authors(More)
Delayed resistance to ischemic injury can be induced by a variety of conditioning stimuli. This phenomenon, known as delayed ischemic tolerance, is initiated over several hours or a day, and can persist for up to a week or more. The present paper describes recent experiments in which transient hypothermia was used as a conditioning stimulus to induce(More)
We report that two isoforms of Drosophila tyrosine hydroxylase protein are encoded via alternatively spliced exons. The major isoform (Type II) contains a novel acidic extension of 71 amino acids in the amino-terminal regulatory domain, which is likely to alter the regulatory properties of the tyrosine hydroxylase protein. The minor isoform (Type I)(More)
Stressful, preconditioning stimuli can elicit rapid and delayed forms of tolerance to ischemic injury. The identification and characterization of preconditioning stimuli that are effective, but relatively benign, could enhance the clinical applicability of induced tolerance. This study examines the efficacy of brief hypothermia as a preconditioning stimulus(More)
Glioblastoma multiforme (GBM) is the most common and lethal form of brain cancer and these tumors are highly resistant to chemo- and radiotherapy. Radioresistance is thought to result from a paucity of molecular oxygen in hypoxic tumor regions, resulting in reduced DNA damage and enhanced cellular defense mechanisms. Efforts to counteract tumor hypoxia(More)