Learn More
This study examined differential effects of alpha-(α-) particle radiation and X-rays on apoptosis and associated changes in gene expression. Human monocytic cells were exposed to α-particle radiation and X-rays from 0 to 1.5 Gy. Four days postexposure, cell death was measured by flow cytometry and 84 genes related to apoptosis were analyzed using real-time(More)
Alpha (α)-particle emitters are probable isotopes to be used in a terrorist attack. The development of biological assessment tools to identify those who have handled these difficult to detect materials would be an asset to our current forensic capacity. In this study, for the purposes of biomarker discovery, human keratinocytes were exposed to α-particle(More)
This study examined alpha (α-) particle radiation effects on global changes in gene expression for the purposes of identifying potential signaling pathways that may be involved in Radon ((222)Rn) gas exposure and lung carcinogenesis. Human lung fibroblast cells were exposed to α-particle radiation at a dose range of 0-1.5Gy. Twenty-four hours post-exposure,(More)
The threat of a terrorist-precipitated nuclear event places humans at danger for radiological exposures. Isotopes which emit alpha (α)-particle radiation pose the highest risk. Currently, gene expression signatures are being developed for radiation biodosimetry and triage with respect to ionizing photon radiation. This study was designed to determine if(More)
Radon ((222)Rn) gas produces decay progeny that emits high energy alpha (α)-particles. Epidemiological studies have shown that exposure to (222)Rn is linked with elevated risk of developing lung cancer, however clear mechanisms leading to such effects have not been delineated. Cytokines play a critical role in inflammation and their dysregulated production(More)
The general public receives approximately half of its exposure to natural radiation through alpha (α)-particles from radon ((222)Rn) gas and its decay progeny. Epidemiological studies have found a positive correlation between exposure to (222)Rn and lung carcinogenesis. An understanding of the transcriptional responses involved in these effects remains(More)
Alpha- (α-) particle radiation exposure has been linked to the development of lung cancer and has been identified as a radiation type likely to be employed in radiological dispersal devices. Currently, there exists a knowledge gap concerning cytokine modulations associated with exposure to α-particles. Bio-plex technology was employed to investigate changes(More)
This study examined alpha (α-) particle radiation effects on global changes in gene expression in human leukemic monocytic cells (THP-1) for the purposes of mining for candidate biomarkers that could be used for the development of a biological assessment tool. THP-1 cells were exposed to α-particle radiation at a dose range of 0 to 1.5 Gy. Twenty-four hours(More)
A variety of alpha (α)-particle emitters are found ubiquitously in the environment, in commercial/therapeutic prod-ucts and are a potential threat in the form of a radiological dispersal device. Our understanding of the biological mechanisms and long-term health effects resulting from α-particle exposure is limited. Exposure to radiation induces modulations(More)
  • 1