Matthew Heron Wilson

Learn More
Transposons are mobile genetic elements that can be used to integrate transgenes into host cell genomes. The piggyBac transposon system has been used for transgenesis of insects and for germline mutagenesis in mice. We compared transposition activity of piggyBac with Sleeping Beauty (SB), a widely used transposon system for preclinical gene therapy studies.(More)
Tobacco smoke is a major cause of both cancer and vascular disease. Although its carcinogenic role via induction of DNA damage and mutation is well established, the mechanisms involved in vascular disease remain unclear. One possibility is that DNA damage causes smooth muscle cell proliferation in the intima of arteries, thereby contributing to(More)
Genetic manipulation of the alpha(2A)-adrenergic receptor (alpha(2A)-AR) in mice has revealed the role of this subtype in numerous responses, including agonist-induced hypotension and sedation. Unexpectedly, alpha(2)-agonist treatment of mice heterozygous for the alpha(2A)-AR (alpha(2A)-AR(+/-)) lowers blood pressure without sedation, indicating that more(More)
Generation of cultured human cells stably expressing one or more recombinant gene sequences is a widely used approach in biomedical research, biotechnology, and drug development. Conventional methods are not efficient and have severe limitations especially when engineering cells to coexpress multiple transgenes or multiprotein complexes. In this report, we(More)
The piggyBac transposon system represents a promising nonviral tool for gene delivery and discovery, and may also be of value for clinical gene therapy. PiggyBac is a highly efficient integrating vector that stably transfects (approximately 40%) of primary human T cells for potential adoptive immunotherapy applications. To evaluate the potential(More)
We characterized a recently developed hyperactive piggyBac (pB) transposase enzyme [containing seven mutations (7pB)] for gene transfer in human cells in vitro and to somatic cells in mice in vivo. Despite a protein level expression similar to that of native pB, 7pB significantly increased the gene transfer efficiency of a neomycin resistance cassette(More)
The sleeping beauty (SB) transposon system has potential utility in gene transfer applications but lacks specificity for genomic integration and exhibits overproduction inhibition which limits in vivo activity. Targeting transposition may be possible by coupling a specific DNA binding domain to the SB transposase, but it is not known if this strategy will(More)
Glutathione transferase isozyme A4 (GSTA4) exhibits high catalytic efficiency to metabolize 4-hydroxynonenal (4-HNE), a highly reactive lipid peroxidation product that has been implicated in the pathogenesis of various chronic diseases. We investigated the role of 4-HNE in the mechanisms of unilateral ureteral obstruction (UUO)-induced fibrosis and its(More)
Somatic cell gene transfer has permitted inducible gene expression in vivo through coinfection of multiple viruses. We hypothesized that the highly efficient plasmid-based piggyBac transposon system would enable long-term inducible gene expression in mice in vivo. We used a multiple-transposon delivery strategy to create a tetracycline-inducible expression(More)
Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes (CTLs) can be modified to function as heterologous tumor directed effector cells that survive longer in vivo than tumor directed T cells without virus specificity, due to chronic stimulation by viral antigens expressed during persistent infection in seropositive individuals. We evaluated the nonviral(More)