Learn More
Plant roots constantly secrete compounds into the soil to interact with neighboring organisms presumably to gain certain functional advantages at different stages of development. Accordingly, it has been hypothesized that the phytochemical composition present in the root exudates changes over the course of the lifespan of a plant. Here, root exudates of in(More)
The need to enhance the sustainability of intensive agricultural systems is widely recognized One promising approach is to encourage beneficial services provided by soil microorganisms to decrease the inputs of fertilizers and pesticides. However, limited success of this approach in field applications raises questions as to how this might be best(More)
Diets shape the animal gut microbiota, although the relationships between diets and the structure of the gut microbial community are not yet well understood. The gut bacterial communities of Reticulitermes flavipes termites fed on four individual plant biomasses with different degrees of recalcitrance to biodegradation were investigated by 16S rRNA(More)
Plantesoil feedbacks are important to productivity and plant community dynamics in both natural and managed ecosystems. Among soil bacteria, the Streptomyces possess particularly strong antagonistic activities and inhibit diverse plant pathogens, offering a clear pathway to involvement in plantesoil feedbacks. We hypothesized that feedback effects and the(More)
This review explores a coevolutionary framework for the study and management of disease-suppressive soil microbial communities. Because antagonistic microbial interactions are especially important to disease suppression, conceptual, theoretical, and empirical work on antagonistic coevolution and its relevance to disease suppression is reviewed. In addition,(More)
High densities of antagonistic Streptomyces are associated with plant disease suppression in many soils. Here we review use of inoculation and organic matter amendments for enriching antagonistic Streptomyces populations to reduce plant disease and note that effective and consistent disease suppression in response to management has been elusive. We argue(More)
We investigated soil streptomycete communities associated with four host plant species (two warm season C4 grasses: Andropogon gerardii, Schizachyrium scoparium and two legumes: Lespedeza capitata, Lupinus perennis), grown in plant communities varying in species richness. We used actinobacteria-selective PCR coupled with pyrosequencing to characterize(More)
Ecological factors that promote pathogen suppressive microbial communities remain poorly understood. However, plants have profound impacts on the structure and functional activities of soil microbial communities , and land-use changes which alter plant diversity or community composition may indirectly affect the structure and function of microbial(More)
A conceptual model emphasizing direct host-microbe interactions has dominated work on host-associated microbiomes. To understand plant-microbiome associations, however, broader influences on microbiome composition and functioning must be incorporated, such as those arising from plant-plant and microbe-microbe interactions. We sampled soil microbiomes(More)
Though traditionally perceived as weapons, antibiotics are also hypothesized to act as microbial signals in natural habitats. However, while subinhibitory concentrations of antibiotics (SICA) are known to shift bacterial gene expression, specific hypotheses as to how SICA influence the ecology of natural populations are scarce. We explored whether(More)