Learn More
1. Using the whole-cell recording technique in rat spinal cord slices we have shown that 26% of sympathetic preganglionic neurones (SPNs) show spontaneous membrane potential oscillations. These oscillations consist of trains of biphasic waves, which we have termed spikelets because of their similarity to truncated action potentials. 2. The spikelets were(More)
1. The electrophysiological properties of electrical synaptic transmission between sympathetic preganglionic neurones (SPNs) in slices of rat spinal cord were investigated using simultaneous dual-electrode patch-clamp recordings. Electrotonic coupling was directly demonstrated between 21 pairs of SPNs. 2. Coupling coefficients determined from the(More)
The neuropeptides orexin A and B are synthesised by perifornical and lateral hypothalamic (LH) neurones and exert a profound influence on autonomic sympathetic processes. LH neurones project to spinal areas containing sympathetic preganglionic neurones (SPNs) and therefore may directly modulate sympathetic output. In the present study we examined the(More)
Neural computations underlying cognitive functions require calibration of the strength of excitatory and inhibitory synaptic connections and are associated with modulation of gamma frequency oscillations in network activity. However, principles relating gamma oscillations, synaptic strength and circuit computations are unclear. We address this in attractor(More)
1. Whole-cell patch-clamp recordings were used to investigate the effects of the anaesthetic Saffan on the electrophysiological properties of sympathetic preganglionic neurones (SPNs) in rat spinal cord slices. 2. Saffan (1-54 microM) abolished or reduced the frequency of spontaneous action potential firing and abolished spontaneous, sub-threshold membrane(More)
Anti-N-Methyl-D-Aspartate Receptor (NMDAR) Encephalitis is a novel disease discovered within the past 10 years. Antibodies directed at the NMDAR cause the patient to develop a characteristic syndrome of neuropsychiatric symptoms. Patients go on to develop autonomic dysregulation and often have prolonged hospitalizations and intensive care unit stays. There(More)
The activity of cells in the rodent hippocampus is strongly modulated by both the location of the animal and the ongoing theta oscillation. Place cells, but not interneurons, show a strong spatial modulation of their firing rates, while both place cells and interneurons exhibit phase precession, a phenomenon whereby they spike at a faster frequency than the(More)
Grid cells in the medial entorhinal cortex (MEC) encode location through firing fields that form grid-like maps of the environment. At the same time network activity in the MEC is dominated by oscillations in the theta (4-12 Hz) and gamma (30-100 Hz) bands. Our recent experimental data established that feedback inhibition between excitatory stellate cells(More)