Matthew E. Taylor

Learn More
The reinforcement learning paradigm is a popular way to address problems that have only limited environmental feedback, rather than correctly labeled examples, as is common in other machine learning contexts. While significant progress has been made to improve learning in a single task, the idea of transfer learning has only recently been applied to(More)
Temporal difference (TD) learning (Sutton and Barto, 1998) has become a popular reinforcement learning technique in recent years. TD methods, relying on function approximators to generalize learning to novel situations, have had some experimental successes and have been shown to exhibit some desirable properties in theory, but the most basic algorithms have(More)
Keepaway soccer has been previously put forth as a testbed for machine learning. Although multiple researchers have used it successfully for machine learning experiments, doing so has required a good deal of domain expertise. This paper introduces a set of programs, tools, and resources designed to make the domain easily usable for experimentation without(More)
Distributed POMDPs provide an expressive framework for modeling multiagent collaboration problems, but NEXPComplete complexity hinders their scalability and application in real-world domains. This paper introduces a subclass of distributed POMDPs, and TREMOR, an algorithm to solve such distributed POMDPs. The primary novelty of TREMOR is that agents plan(More)
The ambitious goal of transfer learning is to accelerate learning on a target task after training on a different, but related, source task. While many past transfer methods have focused on transferring value-functions, this paper presents a method for transferring policies across tasks with different state and action spaces. In particular, this paper(More)
Both genetic algorithms (GAs) and temporal difference (TD) methods have proven effective at solving reinforcement learning (RL) problems. However, since few rigorous empirical comparisons have been conducted, there are no general guidelines describing the methods' relative strengths and weaknesses. This paper presents the results of a detailed empirical(More)
In creating an evacuation simulation for training and planning, realistic agents that reproduce known phenomenon are required. Evacuation simulation in the airport domain requires additional features beyond most simulations, including the unique behaviors of firsttime visitors who have incomplete knowledge of the area and families that do not necessarily(More)