Learn More
The reinforcement learning paradigm is a popular way to address problems that have only limited environmental feedback, rather than correctly labeled examples, as is common in other machine learning contexts. While significant progress has been made to improve learning in a single task, the idea of transfer learning has only recently been applied to(More)
Temporal difference (TD) learning (Sutton and Barto, 1998) has become a popular reinforcement learning technique in recent years. TD methods, relying on function approximators to generalize learning to novel situations, have had some experimental successes and have been shown to exhibit some desirable properties in theory, but the most basic algorithms have(More)
Keepaway soccer has been previously put forth as a testbed for machine learning. Although multiple researchers have used it successfully for machine learning experiments, doing so has required a good deal of domain expertise. This paper introduces a set of programs, tools, and resources designed to make the domain easily usable for experimentation without(More)
Policy gradient algorithms have shown considerable recent success in solving high-dimensional sequential decision making tasks, particularly in robotics. However, these methods often require extensive experience in a domain to achieve high performance. To make agents more sample-efficient, we developed a multi-task policy gradient method to learn decision(More)
Distributed POMDPs provide an expressive framework for modeling multiagent collaboration problems, but NEXP-Complete complexity hinders their scalability and application in real-world domains. This paper introduces a subclass of distributed POMDPs, and TREMOR, an algorithm to solve such distributed POMDPs. The primary novelty of TREMOR is that agents plan(More)
Temporal difference (TD) learning methods [22] have become popular reinforcement learning techniques in recent years. TD methods have had some experimental successes and have been shown to exhibit some desirable properties in theory, but have often been found very slow in practice. A key feature of TD methods is that they represent policies in terms of(More)
—Empirical evaluations play an important role in machine learning. However, the usefulness of any evaluation depends on the empirical methodology employed. Designing good empirical methodologies is difficult in part because agents can overfit test evaluations and thereby obtain misleadingly high scores. We argue that reinforcement learning is particularly(More)
Reinforcement learning describes how a learning agent can achieve optimal behaviour based on interactions with its environment and reward feedback. A limiting factor in reinforcement learning as employed in artificial intelligence is the need for an often prohibitively large number of environment samples before the agent reaches a desirable level of(More)