Matthew E. Poynter

Learn More
The transcription factor, nuclear factor-kappaB (NF-kappaB) has been studied extensively due to its prominent role in the regulation of immune and inflammatory genes, apoptosis, and cell proliferation. It has been known for more that a decade that NF-kappaB is a redox-sensitive transcription factor. The contribution of redox regulation and the location of(More)
In aged mice, the redox-regulated transcription factor nuclear factor-kappaB (NF-kappaB) becomes constitutively active in many tissues, as well as in cells of the hematopoietic system. This oxidative stress-induced activity promotes the production of a number of pro-inflammatory cytokines, which can contribute to the pathology of many disease states(More)
Bone marrow-derived mesenchymal stromal cells (BMSCs) mitigate inflammation in mouse models of acute lung injury. However, specific mechanisms of BMSC actions on CD4 T lymphocyte-mediated inflammation in vivo remain poorly understood. Limited data suggests promotion of Th2 phenotype in models of Th1-mediated diseases. However, whether this might alleviate(More)
Pulmonary inflammation in asthma is orchestrated by the activity of NF-kappaB. NO and NO synthase (NOS) activity are important modulators of inflammation. The availability of the NOS substrate, l-arginine, is one of the mechanisms that controls the activity of NOS. Arginase also uses l-arginine as its substrate, and arginase-1 expression is highly induced(More)
Class-A scavenger receptors (SR-A) and TLR mediate early immune responses against pathogenic bacteria. SR-A and TLR molecules are expressed on phagocytes and interact with common ligands from Gram-negative and Gram-positive bacteria; however, the contribution of TLR activity to SR-A-mediated phagocytosis has not been assessed directly. Herein, we provide(More)
The pathophysiology of many disease states observed in aged individuals has been linked to the dysregulated production of several pleiotropic cytokines. We have demonstrated that NF-kappa B, a major transcriptional regulator of these aberrantly expressed cytokines, exists in a constitutively activated state in cells obtained from the major lymphoid organs(More)
To reveal the causal role of airway epithelial NF-kappaB activation in evoking airway inflammation, a transgenic mouse was created expressing a mutant version of the inhibitory protein I-kappaBalpha. This I-kappaBalpha superrepressor (I-kappaBalpha(SR)) acts to repress NF-kappaB activation exclusively in airway epithelial cells, under the transcriptional(More)
IL-1β is a cytokine critical to several inflammatory diseases in which pathogenic Th17 responses are implicated. Activation of the NLRP3 inflammasome by microbial and environmental stimuli can enable the caspase-1-dependent processing and secretion of IL-1β. The acute-phase protein serum amyloid A (SAA) is highly induced during inflammatory responses,(More)
The lung can be exposed to a variety of reactive nitrogen intermediates through the inhalation of environmental oxidants and those produced during inflammation. Reactive nitrogen species (RNS) include, nitrogen dioxide (·NO2) and peroxynitrite (ONOO–). Classically known as a major component of both indoor and outdoor air pollution, ·NO2 is a toxic free(More)
RATIONALE Tumor necrosis factor alpha (TNF-alpha) has been implicated as a key cytokine in many inflammatory lung diseases. These effects are currently unclear, because a transgenic mouse overexpressing TNF-alpha in the lung has been shown in separate studies to produce elements of both emphysema and pulmonary fibrosis. OBJECTIVES We sought to elucidate(More)