Matthew Daniel Casselman

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
.................................................................................................................... xiv CHAPTER I – INTRODUCTION ...................................................................................... 1 1.1 Heparin and Heparan Sulfate – Structure and Biosynthesis ................................... 1 1.2 Role of Heparin and(More)
The stability and reactivity of the multiple oxidation states of aromatic compounds are critical to the performance of these species as additives and electrolytes in energy-storage applications. Both for the overcharge mitigation in ion-intercalation batteries and as electroactive species in redox flow batteries, neutral, radical-cation, and radical-anion(More)
The swimming performance of fishes has generally been assessed using a stepped velocity test where the speed at fatigue is considered the critical swimming performance (U crit). Although this test was designed for fishes that swim in the water column, it has been applied to fishes that adhere to the substrate. Here we examined the extent to which substrate(More)
4-Deoxypentenosides (4-DPs) are versatile synthons for rare or higher-order pyranosides, and they provide an entry for structural diversification at the C5 position. Previous studies have shown that 4-DPs undergo stereocontrolled DMDO oxidation; subsequent epoxide ring-openings with various nucleophiles can proceed with both anti or syn selectivity. Here,(More)
The substitution of sterically bulky groups at precise locations along the periphery of fused-ring aromatic systems is demonstrated to increase electrochemical oxidation potentials by preventing relaxation events in the oxidized state. Phenothiazines, which undergo significant geometric relaxation upon oxidation, are used as fused-ring models to showcase(More)
Phenothiazine and five N-substituted derivatives were evaluated as electrolyte additives for overcharge protection in LiFePO4 /synthetic graphite lithium-ion batteries. We report on the stability and reactivity of both the neutral and radical-cation forms of these six compounds. While three of the compounds show extensive overcharge protection, the(More)
  • 1