Matthew D. Walker

Matthew J Farrer3
A Jon Stoessl3
3Matthew J Farrer
3A Jon Stoessl
Learn More
Longitudinal measurements of dopamine (DA) uptake and turnover in transgenic rodents may be critical when developing disease-modifying therapies for Parkinson's disease (PD). We demonstrate methodology for such measurements using [(18)F]fluoro-3,4-dihydroxyphenyl-L-alanine ([(18)F]FDOPA) positron emission tomography (PET). The method was applied to(More)
BACKGROUND A major risk-factor for developing Parkinson's disease (PD) is genetic variability in leucine-rich repeat kinase 2 (LRRK2), most notably the p.G2019S mutation. Examination of the effects of this mutation is necessary to determine the etiology of PD and to guide therapeutic development. OBJECTIVE Assess the behavioral consequences of LRRK2(More)
Positron emission tomography (PET) is generally considered to be a quantitative imaging modality, allowing assessment of regional differences in radiotracer accumulation and the derivation of quantitative physiological information. Due to the increasing complexity of PET technology, the quantitative accuracy of PET images has to be continually reassessed if(More)
BACKGROUND [18 F]fluorodopa (FDOPA) positron emission tomography (PET) allows assessment of levodopa (LDOPA) metabolism and is widely used to study Parkinson's disease. We examined how [18 F]FDOPA PET-derived kinetic parameters relate the dopamine (DA) and DA metabolite content of extracellular fluid measured by microdialysis to aid in the interpretation of(More)
This paper proposes a new algorithm that extracts color correction parameters from pairs of images and enables the perceived illumination of one image to be imposed on the other. The algorithm does not rely upon prior assumptions regarding illumination constancy and operates between images that can be significantly different in content. The work derives(More)
  • 1