Learn More
We investigate the power of the Wang tile self-assembly model at temperature 1, a threshold value that permits attachment between any two tiles that share even a single bond. When restricted to deterministic assembly in the plane, no temperature 1 assembly system has been shown to build a shape with a tile complexity smaller than the diameter of the shape.(More)
— Recent development of neuromorphic hardware offers great potential to speed up simulations of neural networks. SpiNNaker is a neuromorphic hardware and software system designed to be scalable and flexible enough to implement a variety of different types of simulations of neural systems, including spiking simulations with plasticity and learning.(More)
A highly desired part of the synthetic biology toolbox is an embedded chemical microcontroller, capable of autonomously following a logic program specified by a set of instructions, and interacting with its cellular environment. Strategies for incorporating logic in aqueous chemistry have focused primarily on implementing components, such as logic gates,(More)
—Balancing a normal pencil on its tip requires rapid feedback control with latencies on the order of milliseconds. This demonstration shows how a pair of spike-based silicon retina dynamic vision sensors (DVS) is used to provide fast visual feedback for controlling an actuated table to balance an ordinary pencil. Two DVSs view the pencil from right angles.(More)
We present an approach for the automatic reconstruction of neurons from 3D stacks of electron microscopy sections. The core of our system is a set of possible assignments, each of which proposes with some cost a link between neuron regions in consecutive sections. These can model the continuation , branching, and end of neurons. The costs are trainable on(More)
—Deep neural networks such as Convolutional Networks (ConvNets) and Deep Belief Networks (DBNs) represent the state-of-the-art for many machine learning and computer vision classification problems. To overcome the large computational cost of deep networks, spiking deep networks have recently been proposed , given the specialized hardware now available for(More)
It is known that neurons can project topographically to their target area, and reciprocal projections back from the target area are typically aligned with the forward projection. However, the wide terminal arbors of individual axons limit the precision of such anatomical reciprocity. This leaves open the question of whether more precise reciprocal(More)
Molecular self-assembly is a promising approach to bottom-up fabrication of complex structures. A major impediment to the practical use of self-assembly to create complex structures is the high rate of error under existing experimental conditions. Recent theoretical work on algorithmic self-assembly has shown that under a realistic model of tile addition(More)