Matthew Conley

Learn More
Hyperpolarization of substrates for magnetic resonance spectroscopy (MRS) and imaging (MRI) by dissolution dynamic nuclear polarization (D-DNP) usually involves saturating the ESR transitions of polarizing agents (PAs; e.g., persistent radicals embedded in frozen glassy matrices). This approach has shown enormous potential to achieve greatly enhanced(More)
We describe the development of gold- and platinum-catalyzed cycloisomerizations of 1,5-enynes. This catalytic process displays a wide alkyne scope and furnishes a range of highly functionalized 1,4- and 1,3-cyclohexadienes. In the case of 1-siloxy-1-yne-5-enes, the reactions are efficiently catalyzed by AuCl (1 mol %) at ambient temperature to afford siloxy(More)
The insertion of an olefin into a preformed metal-carbon bond is a common mechanism for transition-metal-catalyzed olefin polymerization. However, in one important industrial catalyst, the Phillips catalyst, a metal-carbon bond is not present in the precatalyst. The Phillips catalyst, CrO3 dispersed on silica, polymerizes ethylene without an activator.(More)
Mesoporous hybrid silica-organic materials containing homogeneously distributed stable mono- or dinitroxide radicals covalently bound to the silica surface were developed as polarization matrixes for solid-state dynamic nuclear polarization (DNP) NMR experiments. For TEMPO-containing materials impregnated with water or 1,1,2,2-tetrachloroethane, enhancement(More)
Solid-state NMR plays a critical role in establishing the atomic structure of surface species, obtained by the controlled grafting of organometallic complexes onto amorphous oxide supports, a promising strategy towards molecularly defined heterogeneous catalysts. Using one-dimensional or multi-dimensional NMR analysis allows us to map the structure of(More)
Site Heterogeneous Catalysts: Strategies, Methods, Structures, and Activities Christophe Copeŕet,*,† Aleix Comas-Vives,† Matthew P. Conley,† Deven P. Estes,† Alexey Fedorov,† Victor Mougel,† Haruki Nagae,†,‡ Francisco Nuñ́ez-Zarur,† and Pavel A. Zhizhko†,§ †Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1−5, CH-8093 Zürich,(More)
Mononuclear Cr(III) surface sites were synthesized from grafting [Cr(OSi(O(t)Bu)3)3(tetrahydrofurano)2] on silica partially dehydroxylated at 700 °C, followed by a thermal treatment under vacuum, and characterized by infrared, ultraviolet-visible, electron paramagnetic resonance (EPR), and X-ray absorption spectroscopy (XAS). These sites are highly active(More)
We describe the reactivity of well-defined chromium silicates toward ethylene and propane. The initial motivation for this study was to obtain a molecular understanding of the Phillips polymerization catalyst. The Phillips catalyst contains reduced chromium sites on silica and catalyzes the polymerization of ethylene without activators or a preformed Cr-C(More)
Lu[CH(SiMe3)2]3 reacts with [SiO2-700] to give [(≡SiO)Lu[CH(SiMe3)2]2] and CH2(SiMe3)2. [(≡SiO)Lu[CH(SiMe3)2]2] is characterized by solid-state NMR and EXAFS spectroscopy, which show that secondary Lu···C and Lu···O interactions, involving a γ-CH3 and a siloxane bridge, are present. From X-ray crystallographic analysis, the molecular analogues(More)