Matthew Chung-Hin Leung

Learn More
Ribonucleic acid interference (RNAi) is a powerful molecular tool that has potential to revolutionize the treatment of cancer. One major challenge of applying this technology for clinical application is the lack of site-specific carriers that can effectively deliver short interfering RNA (siRNA) to cancer cells. Here we report the development and assessment(More)
Increasing cell seeding efficiency in a tissue engineering construct can enhance cellular activity and tissue formation in vivo. Here, we demonstrate the use of alginate gel as a secondary phase material in 3D porous β-tricalcium phosphate scaffolds to improve cell seeding and provide controlled release of growth factors for bone tissue engineering. Cells(More)
Human embryonic stem cells (hESCs) are routinely cultured on fibroblast feeder layers or in fibroblast-conditioned medium, which requires continued supply of feeder cells and poses the risks of xenogenic contamination and other complications such as feeder-dependent outcome. Here, we demonstrate a strategy that supports sustained self-renewal of hESCs in a(More)
Despite recent advances in the understanding of its cell biology, glioma remains highly lethal. Development of effective therapies requires a cost-effective in vitro tumor model that more accurately resembles the in vivo tumor microenvironment as standard two-dimensional (2D) tissue culture conditions do so poorly. Here we report on the use of a(More)
Hepatocellular carcinoma (HCC) is a prevalent solid malignancy. Critically needed discovery of new therapeutics has been hindered by lack of an in vitro cell culture system that can effectively represent the in vivo tumor microenvironment. To address this need, a 3D in vitro HCC model was developed using a biocompatible, chitosan-alginate (CA) scaffold(More)
There is an urgent need for a rationally-designed, cellularized skin graft capable of reproducing the micro-environmental cues necessary to promote skin healing and regeneration. To address this need, we developed a composite scaffold, namely, CA/C-PEG, composing of a porous chitosan-alginate (CA) structure impregnated with a thermally reversible(More)
This study investigated the use of three-dimensional porous chitosan-alginate (CA) scaffolds for critical size calvarial defect (diameter, 5.0 mm) repair in Sprague-Dawley rats. CA scaffolds have been used for in vitro culture of many cell types and demonstrated osteogenesis in ectopic locations in vivo, but have yet to be evaluated for functional bone(More)
Current treatments for severe skin damage involve the grafting of extremely limited autogenic skin or the use of synthetic skin grafts that do not fully recapitulate the biological properties of native skin. In this study we developed a novel bi-layer scaffold that provides the microenvironmental cues favorable to promoting skin healing and regeneration.(More)
Imaging is essential in accurately detecting, staging, and treating primary liver cancer (hepatocellular carcinoma [HCC]), one of the most prevalent and lethal malignancies. We developed a novel multifunctional nanoparticle (NP) specifically targeting glypican-3 (GPC3), a proteoglycan implicated in promotion of cell growth that is overexpressed in most(More)
Skeletal muscle injury can lead to severe motor deficits that adversely affect movement and quality of life. Current surgical treatments for skeletal muscle are hindered by the poor formation of organized myotube bundles at the wound site. Tissue-engineered skeletal muscle constructs to date have been unable to generate high degrees of myotube density and(More)