Learn More
IP networks today require massive effort to configure and manage. Ethernet is vastly simpler to manage, but does not scale beyond small local area networks. This paper describes an alternative network architecture called SEATTLE that achieves the best of both worlds: The scalability of IP combined with the simplicity of Ethernet. SEATTLE provides(More)
Today's data centers face extreme challenges in providing low latency. However, fair sharing, a principle commonly adopted in current congestion control protocols, is far from optimal for satisfying latency requirements. We propose Preemptive Distributed Quick (<b>PDQ</b>) flow scheduling, a protocol designed to complete flows quickly and meet flow(More)
Networks are complex and prone to bugs. Existing tools that check configuration files and data-plane state operate offline at timescales of seconds to hours, and cannot detect or prevent bugs as they arise. Is it possible to <i>check network-wide invariants in real time</i>, as the network state evolves? The key challenge here is to achieve extremely low(More)
It is accepted wisdom that the current Internet architecture conflates network locations and host identities, but there is no agreement on how a future architecture should distinguish the two. One could sidestep this quandary by routing directly on host identities themselves, and eliminating the need for network-layer protocols to include any mention of(More)
The routers in an Autonomous System (AS) must distribute the information they learn about how to reach external destinations. Unfortunately, today's internal Border Gateway Protocol (iBGP) architectures have serious problems: a "full mesh" iBGP configuration does not scale to large networks and "route reflection" can introduce problems such as protocol(More)
A key feature that distinguishes modern botnets from earlier counterparts is their increasing use of structured overlay topologies. This lets them carry out sophisticated coordinated activities while being resilient to churn, but it can also be used as a point of detection. In this work, we devise techniques to localize botnet members based on the unique(More)
Current distributed routing paradigms (such as link-state, distance-vector, and path-vector) involve a convergence process consisting of an iterative exploration of intermediate routes triggered by certain events such as link failures. The convergence process increases router load, introduces outages and transient loops, and slows reaction to failures. We(More)
Diagnosing problems in networks is a time-consuming and error-prone process. Existing tools to assist operators primarily focus on analyzing control plane configuration. Configuration analysis is limited in that it cannot find bugs in router software, and is harder to generalize across protocols since it must model complex configuration languages and(More)
Internet routers' forwarding tables (FIBs), which must be stored in expensive fast memory for high-speed packet forwarding, are growing quickly in size due to increased multihoming, finer-grained traffic engineering, and deployment of IPv6 and VPNs. To address this problem, several Internet archi-tectures have been proposed to reduce FIB size by returning(More)