Learn More
It is not clear how information related to cognitive or psychological processes is carried by or represented in the responses of single neurons. One provocative proposal is that precisely timed spike patterns play a role in carrying such information. This would require that these spike patterns have the potential for carrying information that would not be(More)
We would like to know whether the statistics of neuronal responses vary across cortical areas. We examined stimulus-elicited spike count response distributions in V1 and inferior temporal (IT) cortices of awake monkeys. In both areas, the distribution of spike counts for each stimulus was well described by a Gaussian distribution, with the log of the(More)
This paper is concerned with a striking visual experience: that of seeing geometric visual hallucinations. Hallucinatory images were classified by Klüver into four groups called form constants comprising (i) gratings, lattices, fretworks, filigrees, honeycombs and chequer-boards, (ii) cobwebs, (iii) tunnels, funnels, alleys, cones and vessels, and (iv)(More)
Both spike count and temporal modulation are known to carry information about which of a set of stimuli elicited a response; but how much information temporal modulation adds remains a subject of debate. This question usually is addressed by examining the results of a particular experiment that depend on the specific stimuli used. Developing a response(More)
Many observers see geometric visual hallucinations after taking hallucinogens such as LSD, cannabis, mescaline or psilocybin; on viewing bright flickering lights; on waking up or falling asleep; in "near-death" experiences; and in many other syndromes. Klüver organized the images into four groups called form constants: (I) tunnels and funnels, (II) spirals,(More)
Are different kinds of stimuli (for example, different classes of geometric images or naturalistic images) encoded differently by visual cortex, or are the principles of encoding the same for all stimuli? We examine two response properties: (1) the range of spike counts that can be elicited from a neuron in epochs representative of short periods of fixation(More)
Visual short-term memory tasks depend upon both the inferior temporal cortex (ITC) and the prefrontal cortex (PFC). Activity in some neurons persists after the first (sample) stimulus is shown. This delay-period activity has been proposed as an important mechanism for working memory. In ITC neurons, intervening (nonmatching) stimuli wipe out the(More)
In the brain, spike trains are generated in time and presumably also interpreted as they unfold in time. Recent work (Oram et al., 1999; Baker and Lemon, 2000) suggests that in several areas of the monkey brain, individual spike times carry information because they reflect an underlying rate variation. Constructing a model based on this stochastic structure(More)
Interpreting messages encoded in single neuronal responses requires knowing which features of the responses carry information. That the number of spikes is an important part of the code has long been obvious. In recent years, it has been shown that modulation of the firing rate with about 25 ms precision carries information that is not available from the(More)