Learn More
Previous studies have suggested that the motor system may simplify control by combining a small number of muscle synergies represented as activation profiles across a set of muscles. The role of sensory feedback in the activation and organization of synergies has remained an open question. Here, we assess to what extent the motor system relies on centrally(More)
Several recent studies have used matrix factorization algorithms to assess the hypothesis that behaviors might be produced through the combination of a small number of muscle synergies. Although generally agreeing in their basic conclusions, these studies have used a range of different algorithms, making their interpretation and integration difficult. We(More)
One theory for how humans control movement is that muscles are activated in weighted groups or synergies. Studies have shown that electromyography (EMG) from a variety of tasks can be described by a low-dimensional space thought to reflect synergies. These studies use algorithms, such as nonnegative matrix factorization, to identify synergies from EMG. Due(More)
The basic hypothesis of producing a range of behaviors using a small set of motor commands has been proposed in various forms to explain motor behaviors ranging from basic reflexes to complex voluntary movements. Yet many fundamental questions regarding this long-standing hypothesis remain unanswered. Indeed, given the prominent nonlinearities and high(More)
We developed non-negative factorization algorithms based on statistical distributions which are members of the exponential family, and using multiplicative update rules. We compared in detail the performance of algorithms derived using two particular exponential family distributions, assuming either constant variance noise (Gaussian) or signal dependent(More)
Previous studies have demonstrated that "locomotor-like" rhythmic patterns can be evoked in the isolated neonatal rat spinal cord by several means, including pharmacological neuromodulation and electrical stimulation of various pathways. Recent studies have used stimulation of afferent pathways to evoke rhythmic patterns, relying on synaptic activation of(More)
We review here experiments examining the hypothesis that vertebrate spinal motor systems produce movement through the flexible combination of a small number of units of motor output. Using a variety of preparations and techniques, these experiments provide evidence for such spinally generated units and for the localization of the networks responsible for(More)
The production of any motor behavior requires coordinated activity in motor neurons and premotor networks. In vertebrates, this coordination is often assumed to take place through chemical synapses. Here we review recent data suggesting that electrical gap-junction coupling plays an important role in coordinating and generating motor outputs in embryonic(More)
The question of whether the nervous system produces movement through the combination of a few discrete elements has long been central to the study of motor control. Muscle synergies, i.e. coordinated patterns of muscle activity, have been proposed as possible building blocks. Here we propose a model based on combinations of muscle synergies with a specific(More)