Matthew C. R. Kong

Learn More
This paper describes a flow switching technique applicable to centrifugal microfluidic platforms, using a regulated stream of compressed gas. This pneumatic flow switching technique allows for flow control at a T-shaped junction between one inlet channel and two outlet channels. This technique provides a noncontact, robust, and efficient method for(More)
This paper describes a pumping technique applicable to centrifugal microfluidic platforms, involving the use of a regulated stream of compressed gas to pump liquid radially inward and toward the center of the platform while spinning. This technique provides a noncontact method for pumping fluids and is highly efficient, requiring only approximately 60 s to(More)
In this technical note, a liquid-liquid extraction technique was performed using pneumatic liquid recirculation on a centrifugal microfluidic device. Non-contact pneumatic pumping enabled a multi-cycle liquid-liquid extraction process using aqueous iodine in a potassium iodide solution and hexadecane while requiring a minimal amount of space on the device.(More)
We describe two novel centrifugal microfluidic platform designs that enable passive pumping of liquids radially inward while the platform is in motion. The first design uses an immiscible liquid to displace an aqueous solution back towards the center of the platform, while the second design uses an arbitrary pumping liquid with a volume of air between it(More)
A pneumatically enhanced centrifugal microfluidic platform was developed for rapid spectrophotometric determination of aqueous sulfide. This platform performs an automated analysis based on the reaction between hydrogen sulfide and N,N-dimethyl-p-phenylenediamine in the presence of iron(III) chloride to form Methylene Blue. The platform design minimizes the(More)
This paper demonstrates a valveless pneumatic fluid transfer technique applicable to centrifugal microfluidic platforms. The technique involves using compressed gas to generate a pneumatic force, which works together with the centrifugal force to control and direct fluid flow. Fluid can be pneumatically transferred from chamber to chamber, greatly(More)
  • 1