Matthew Brand

Learn More
We present a generative model for isotropic bidirectional reflectance distribution functions (BRDFs) based on acquired reflectance data. Instead of using analytical reflectance models, we represent each BRDF as a dense set of measurements. This allows us to interpolate and extrapolate in the space of acquired BRDFs to create new BRDFs. We treat each(More)
We present algorithms for coupling and training hidden Markov models (HMMs) to model interacting processes, and demonstrate their superiority to conventional HMMs in a vision task classifying two-handed actions. HMMs are perhaps the most successful framework in perceptual computing for modeling and classifying dynamic behaviors, popular because they offer(More)
Nonrigid 3D structure-from-motion and 2D optical flow can both be formulated as tensor factorization problems. The two problems can be made equivalent through a noisy affine transform, yielding a combined nonrigid structure-from-intensities problem that we solve via structured matrix decompositions. Often the preconditions for this factorization are(More)
We present methods for coupling hidden Markov models (hmms) to model systems of multiple interacting processes. The resulting models have multiple state variables that are temporally coupled via matrices of conditional probabilities. We introduce a deterministic O(T(CN) 2) approximation for maximum a posterior (MAP) state estimation which enables fast(More)
We introduce a method for predicting a control signal from another related signal, and apply it to voice puppetry: Generating full facial animation from expressive information in an audio track. The voice puppet learns a facial control model from computer vision of real facial behavior, automatically incorporating vocal and facial dynamics such as(More)
We construct a nonlinear mapping from a high-dimensional sample space to a low-dimensional vector space, effectively recovering a Cartesian coordinate system for the manifold from which the data is sampled. The mapping preserves local geometric relations in the manifold and is pseudo-invertible. We show how to estimate the intrinsic dimensionality of the(More)
Face Transfer is a method for mapping videorecorded performances of one individual to facial animations of another. It extracts visemes (speech-related mouth articulations), expressions, and three-dimensional (3D) pose from monocular video or film footage. These parameters are then used to generate and drive a detailed 3D textured face mesh for a target(More)
We approach the problem of stylistic motion synthesis by learning motion patterns from a highly varied set of motion capture sequences. Each sequence may have a distinct choreography, performed in a distinct sytle. Learning identifies common choreographic elements across sequences, the different styles in which each element is performed, and a small number(More)