Learn More
We present a generative model for isotropic bidirectional reflectance distribution functions (BRDFs) based on acquired reflectance data. Instead of using analytical reflectance models, we represent each BRDF as a dense set of measurements. This allows us to interpolate and extrapolate in the space of acquired BRDFs to create new BRDFs. We treat each(More)
We present algorithms for coupling and training hidden Markov models (HMMs) to model interacting processes, and demonstrate their superiority to conventional HMMs in a vision task classifying two-handed actions. HMMs are perhaps the most successful framework in perceptual computing for modeling and classifying dynamic behaviors, popular because they offer(More)
We introduce an incremental singular value decomposition (SVD) of incomplete data. The SVD is developed as data arrives, and can handle arbitrary missing/untrusted values, correlated uncertainty across rows or columns of the measurement matrix, and user priors. Since incomplete data does not uniquely specify an SVD, the procedure selects one having minimal(More)
We construct a nonlinear mapping from a high-dimensional sample space to a low-dimensional vector space, effectively recovering a Cartesian coordinate system for the manifold from which the data is sampled. The mapping preserves local geometric relations in the manifold and is pseudo-invertible. We show how to estimate the intrinsic dimensionality of the(More)
Nonrigid 3D structure-from-motion and 2D optical flow can both be formulated as tensor factor-ization problems. The two problems can be made equivalent through a noisy affine transform, yielding a combined nonrigid structure-from-intensities problem that we solve via structured matrix decompositions. Often the preconditions for this factorization are(More)
Face Transfer is a method for mapping videorecorded performances of one individual to facial animations of another. It extracts visemes (speech-related mouth articulations), expressions, and three-dimensional (3D) pose from monocular video or film footage. These parameters are then used to generate and drive a detailed 3D textured face mesh for a target(More)
We introduce a method for predicting a control signal from another related signal, and apply it to voice puppetry: Generating full facial animation from expressive information in an audio track. The voice puppet learns a facial control model from computer vision of real facial behavior, automatically incorporating vocal and facial dynamics such as(More)
We present methods for coupling hidden Markov models (hmms) to model systems of multiple interacting processes. The resulting models have multiple state variables that are temporally coupled via matrices of conditional probabilities. We introduce a deterministic O(T(CN) 2) approximation for maximum a posterior (MAP) state estimation which enables fast(More)
ÐHidden Markov models (HMMs) have become the workhorses of the monitoring and event recognition literature because they bring to time-series analysis the utility of density estimation and the convenience of dynamic time warping. Once trained, the internals of these models are considered opaque; there is no effort to interpret the hidden states. We show that(More)