Matthew B. Winn

Learn More
OBJECTIVES This study measured the impact of auditory spectral resolution on listening effort. Systematic degradation in spectral resolution was hypothesized to elicit corresponding systematic increases in pupil dilation, consistent with the notion of pupil dilation as a marker of cognitive load. DESIGN Spectral resolution of sentences was varied with two(More)
Although some cochlear implant (CI) listeners can show good word recognition accuracy, it is not clear how they perceive and use the various acoustic cues that contribute to phonetic perceptions. In this study, the use of acoustic cues was assessed for normal-hearing (NH) listeners in optimal and spectrally degraded conditions, and also for CI listeners.(More)
In this study, spectral properties of speech sounds were used to test functional spectral resolution in people who use cochlear implants (CIs). Specifically, perception of the /ba/-/da/ contrast was tested using two spectral cues: Formant transitions (a fine-resolution cue) and spectral tilt (a coarse-resolution cue). Higher weighting of the formant cues(More)
PURPOSE This study investigated how listeners' native language affects their weighting of acoustic cues (such as vowel quality, pitch, duration, and intensity) in the perception of contrastive word stress. METHOD Native speakers (N = 45) of typologically diverse languages (English, Russian, and Mandarin) performed a stress identification task on nonce(More)
PURPOSE The contributions of voice onset time (VOT) and fundamental frequency (F0) were evaluated for the perception of voicing in syllable-initial stop consonants in words that were low-pass filtered and/or masked by speech-shaped noise. It was expected that listeners would rely less on VOT and more on F0 in these degraded conditions. METHOD Twenty young(More)
There is a wide range of acoustic and visual variability across different talkers and different speaking contexts. Listeners with normal hearing (NH) accommodate that variability in ways that facilitate efficient perception, but it is not known whether listeners with cochlear implants (CIs) can do the same. In this study, listeners with NH and listeners(More)
Vowel perception is influenced by precursor sounds that are resynthesized to shift frequency regions [Ladefoged and Broadbent (1957). J. Acoust. Soc. Am. 29(1), 98-104] or filtered to emphasize narrow [Kiefte and Kluender (2008). J. Acoust. Soc. Am. 123(1), 366-376] or broad frequency regions [Watkins (1991). J. Acoust. Soc. Am. 90(6), 2942-2955]. Spectral(More)
During spoken language comprehension listeners transform continuous acoustic cues into categories (e.g., /b/ and /p/). While long-standing research suggests that phonetic categories are activated in a gradient way, there are also clear individual differences in that more gradient categorization has been linked to various communication impairments such as(More)
OBJECTIVES Previous research has found that relative to their peers with normal hearing (NH), children with cochlear implants (CIs) produce the sibilant fricatives /s/ and /∫/ less accurately and with less subphonemic acoustic contrast. The present study sought to further investigate these differences across groups in two ways. First, subphonemic acoustic(More)
Children who use bilateral cochlear implants (BiCIs) show significantly poorer sound localization skills than their normal hearing (NH) peers. This difference has been attributed, in part, to the fact that cochlear implants (CIs) do not faithfully transmit interaural time differences (ITDs) and interaural level differences (ILDs), which are known to be(More)