Matthew B. Begemann

Learn More
A gene involved in the production of medium-chain α-olefins was identified in the cyanobacterium Synechococcus sp. strain PCC 7002. The gene encodes a large multidomain protein with homology to type I polyketide synthases, suggesting a route for hydrocarbon biosynthesis from fatty acids via an elongation decarboxylation mechanism.
Cyanobacteria are valuable organisms for studying the physiology of photosynthesis and carbon fixation, as well as metabolic engineering for the production of fuels and chemicals. This work describes a novel counter selection method for the cyanobacterium Synechococcus sp. PCC 7002 based on organic acid toxicity. The organic acids acrylate,(More)
The application of synthetic biology requires characterized tools to precisely control gene expression. This toolbox of genetic parts previously did not exist for the industrially promising cyanobacterium, Synechococcus sp. strain PCC 7002. To address this gap, two orthogonal constitutive promoter libraries, one based on a cyanobacterial promoter and the(More)
Trans-acting regulators provide novel opportunities to study essential genes and regulate metabolic pathways. We have adapted the clustered regularly interspersed palindromic repeats (CRISPR) system from Streptococcus pyogenes to repress genes in trans in the cyanobacterium Synechococcus sp. strain PCC 7002 (hereafter PCC 7002). With this approach, termed(More)
Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, lignocellulosic biohydrogen production remains inefficient with pretreatments that are heavily fossil fuel-dependent.(More)
Predictive control of gene expression is an essential tool for developing synthetic biological systems. The current toolbox for controlling gene expression in cyanobacteria is a barrier to more in-depth genetic analysis and manipulation. Towards relieving this bottleneck, this work describes the use of synthetic biology to construct an(More)
Precise genome editing of plants has the potential to reshape global agriculture through the targeted engineering of endogenous pathways or the introduction of new traits. To develop a CRISPR nuclease-based platform that would enable higher efficiencies of precise gene insertion or replacement, we screened the Cpf1 nucleases from Francisella novicida and(More)
  • 1