Learn More
Touch perception on the fingers and hand is essential for fine motor control, contributes to our sense of self, allows for effective communication, and aids in our fundamental perception of the world. Despite increasingly sophisticated mechatronics, prosthetic devices still do not directly convey sensation back to their wearers. We show that implanted(More)
Functional electrical stimulation (FES) can restore limb movements through electrically initiated, coordinated contractions of paralyzed muscles. The peripheral nerve is an attractive site for stimulation using cuff electrodes. Many applications will require the electrode to selectively activate many smaller populations of axons within a common nerve trunk.(More)
Action potentials arising from retinal ganglion cells ultimately create visual percepts. In persons blind from retinitis pigmentosa and age-related macular degeneration, viable retinal ganglion cells remain, and the retina can be stimulated electrically to restore partial sight. However, it is unclear what neuronal elements in the retina are activated by(More)
The number of applications using neural prosthetic interfaces is expanding. Computer models are a valuable tool to evaluate stimulation techniques and electrode designs. Although our understanding of neural anatomy has improved, its impact on the effects of neural stimulation is not well understood. This study evaluated the effects of fascicle perineurial(More)
OBJECTIVE Stability and selectivity are important when restoring long-term, functional sensory feedback in individuals with limb-loss. Our objective is to demonstrate a chronic, clinical neural stimulation system for providing selective sensory response in two upper-limb amputees. APPROACH Multi-contact cuff electrodes were implanted in the median, ulnar,(More)
We have tested the hypothesis that the Flat Interface Nerve Electrode (FINE) can selectively stimulate each muscle innervated by the common femoral nerve of the human, near the inguinal ligament in a series of intraoperative trials. During routine vascular surgeries, an 8-contact FINE was placed around the common femoral nerve between the inguinal ligament(More)
This paper describes a method to efficiently sample EMG recruitment space over a wide range of pulse amplitude (PA) and pulse width (PW). A gradient based search method is developed to find high information areas of a recruitment surface. This search method is first examined in the context of simulated EMG recruitment data and its ability to sample and(More)
Ankle control is critical to both standing balance and efficient walking. The hypothesis presented in this paper is that a Flat Interface Nerve Electrode (FINE) placed around the sciatic nerve with a fixed number of contacts at predetermined locations and without a priori knowledge of the nerve’s underlying neuroanatomy can selectively control each ankle(More)
The long-term goal of our research is to restore standing function via selective activation of target fascicles in the femoral nerve by a flat interface nerve electrode (FINE). The optimal number and location of contacts within a FINE had not been determined previously. A realistic three-dimensional finite element model based on a cross section of human(More)