Matthew A. Jones

Learn More
The circadian clock modulates expression of a large fraction of the Arabidopsis genome and affects many aspects of plant growth and development. We have discovered one way in which the circadian system regulates hormone signaling, identifying a node that links the clock and auxin networks. Auxin plays key roles in development and responses to environmental(More)
Phototropins (phot1 and phot2) are plasma membrane-associated receptor kinases that respond specifically to blue and UV wavelengths. In addition to a C-terminal Ser/Thr kinase domain, phototropins contain two N-terminal chromophore binding LOV domains that function as photoswitches to regulate a wide range of enzymatic activities in prokaryotes and(More)
Circadian clocks are near-ubiquitous molecular oscillators that coordinate biochemical, physiological, and behavioral processes with environmental cues, such as dawn and dusk. Circadian timing mechanisms are thought to have arisen multiple times throughout the evolution of eukaryotes but share a similar overall structure consisting of interlocking(More)
The circadian clock plays a crucial role in coordinating plant metabolic and physiological functions with predictable environmental variables, such as dusk and dawn, while also modulating responses to biotic and abiotic challenges. Much of the initial characterization of the circadian system has focused on transcriptional initiation, but it is now apparent(More)
The expression in vivo of FMS transcripts and antigen by neoplastic epithelial cells was demonstrated immunohistochemically or by in situ hybridization in sixteen of seventeen human breast carcinoma specimens and one case of sclerosing adenosis. Expression of CSF-1 receptor (FMS) transcripts and protein was also observed in vitro in two or three breast(More)
Phototropins (phot1 and phot2) are blue-light receptor kinases controlling a range of responses that optimize the photosynthetic efficiency of plants. Light sensing is mediated by two flavin-binding motifs, known as LOV1 and LOV2, located within the N-terminal region of the protein. Photoexcitation via LOV2 leads to activation of the C-terminal kinase(More)
Circadian rhythms provide organisms with an adaptive advantage, allowing them to regulate physiological and developmental events so that they occur at the most appropriate time of day. In plants, as in other eukaryotes, multiple transcriptional feedback loops are central to clock function. In one such feedback loop, the Myb-like transcription factors CCA1(More)
By coupling a probe transition to a Rydberg state using electromagnetically induced transparency (EIT) we map the strong dipole-dipole interactions onto an optical field. We characterize the resulting cooperative optical nonlinearity as a function of probe strength and density. We demonstrate good quantitative agreement between the experiment and an N-atom(More)
Phototropins (phot1 and phot2) are blue light-activated serine/threonine protein kinases that elicit a variety of photoresponses in plants. Light sensing by the phototropins is mediated by two flavin mononucleotide (FMN)-binding domains, designated LOV1 and LOV2, located in the N-terminal region of the protein. Exposure to light results in the formation of(More)