Matteo Parsani

  • Citations Per Year
Learn More
Non-linear entropy stability and a summation-by-parts (SBP) framework are used to derive entropy stable interior interface coupling for the semi-discretized three-dimensional (3D) compressible Navier–Stokes equations. A complete semidiscrete entropy estimate for the interior domain is achieved combining a discontinuous entropy conservative operator of any(More)
Development of scientific software involves tradeoffs between ease of use, generality, and performance. We describe the design of a general hyperbolic PDE solver that can be operated with the convenience of MATLAB yet achieves efficiency near that of hand-coded Fortran and scales to the largest supercomputers. This is achieved by using Python for most of(More)
Explicit Runge–Kutta schemes with large stable step sizes are developed for integration of high order spectral difference spatial discretizations on quadrilateral grids. The new schemes permit an effective time step that is substantially larger than the maximum admissible time step of standard explicit Runge–Kutta schemes available in literature.(More)
We present a finite volume method that is applicable to general hyperbolic PDEs, including non-conservative and spatially varying systems. The method can be extended to arbitrarily high order of accuracy and allows a well-balanced implementation for capturing solutions of balance laws near steady state. This well-balancing is achieved through the f -wave(More)
Development of scientific software involves tradeoffs between ease of use, generality, and performance. We describe the design of a general hyperbolic PDE solver that can be operated with the convenience of MATLAB yet achieves efficiency near that of hand-coded Fortran and scales to the largest supercomputers. This is achieved by using Python for most of(More)
In practical computation with Runge–Kutta methods, the stage equations are not satisfied exactly, due to roundoff errors, algebraic solver errors, and so forth. We show by example that propagation of such errors within a single step can have catastrophic effects for otherwise practical and well-known methods. We perform a general analysis of internal error(More)
High order methods for the solution of PDEs expose a tradeoff between computational cost and accuracy on a per degree of freedom basis. In many cases, the cost increases due to higher arithmetic intensity while affecting data movement minimally. As architectures tend towards wider vector instructions and expect higher arithmetic intensities, the best order(More)
Mark H. Carpenter∗, Comput. AeroSciences Branch (CASB) NASA LaRC, Hampton, VA 23681, USA, Matteo Parsani†, King Abdullah University of Science and Technology (KAUST), Extreme Computing Research Center (ECRC), Computer, Electrical and Mathematical Sciences & Engineering (CEMSE), Thuwal, 23955-6900, Saudi Arabia , Travis C. Fisher‡, Sandia National(More)
Staggered grid, entropy stable discontinuous spectral collocation operators of any order are developed for the compressible Euler and Navier–Stokes equations on unstructured hexahedral elements. This generalization of previous entropy stable spectral collocation work [M. H. Carpenter, T. C. Fisher, E. J. Nielsen, and S. H. Frankel, SIAM J. Sci. Comput., 36(More)