Matteo Moretti

Learn More
Biochemical and mechanical signals enabling cardiac regeneration can be elucidated using in vitro tissue-engineering models. We hypothesized that insulin-like growth factor-I (IGF) and slow, bi-directional perfusion could act independently and interactively to enhance the survival, differentiation, and contractile performance of tissue-engineered cardiac(More)
—We discuss some theoretical models for vital signs monitoring by using a UWB radar. Focusing attention on the respiration and heartbeat signals, we show the impact of relevant parameters, like the sampling time interval, on the ability to extract the desired signal parameters from the waveforms elaborated at the receiver. The role of the UWB pulse shape is(More)
We present an integrated experimental-computational mechanobiology model of chondrogenesis. The response of human articular chondrocytes to culture medium perfusion, versus perfusion associated with cyclic pressurisation, versus non-perfused culture, was compared in a pellet culture model, and multiphysic computation was used to quantify oxygen transport(More)
Bone metastases arise in nearly 70% of patients with advanced breast cancer, but the complex metastatic process has not been completely clarified yet. RANKL/RANK/OPG pathway modifications and the crosstalk between metastatic cells and bone have been indicated as potential drivers of the process. Interactions between tumor and bone cells have been studied in(More)
Tendon ruptures are a great burden in clinics. Finding a proper graft material as a substitute for tendon repair is one of the main challenges in orthopaedics, for which the requirement of a biological scaffold would be different for each clinical application. Among biological scaffolds, the use of decellularized tendon-derived matrix increasingly(More)
A major challenge in tissue engineering is to reproduce the native 3D microvascular architecture fundamental for in vivo functions. Current approaches still lack a network of perfusable vessels with native 3D structural organization. Here we present a new method combining self-assembled monolayer (SAM)-based cell transfer and gelatin methacrylate hydrogel(More)
We analyzed specific features of chondrocytes as cellular yield, cell doubling rates and the dependence between these parameters and patient-related data in a set of 211 osteoarthritic (OA) patients undergoing total joint replacement. For each patient the data available were joint type, age and gender. Knee samples chosen randomly among all biopsies were(More)
OBJECTIVES The aims of this study were to determine whether micro-CT is a reliable investigation method to evaluate the severity of OA in the trapezium and to develop a novel micro-CT scoring system based on a quantitative assessment of the subchondral bone thickness in order to better assess OA through an objective parameter. METHODS We compared(More)
In the last few years microfluidics and microfabrication technique principles have been extensively exploited for biomedical applications. In this framework, organs-on-a-chip represent promising tools to reproduce key features of functional tissue units within microscale culture chambers. These systems offer the possibility to investigate the effects of(More)
A very promising application of Ultra Wide-Band radar technology is the continuous monitoring of some physiological parameters, like those relevant to the breath and heartbeat activity, without the need of any invasive tool neither of any contact with the subject under analysis. This idea has already appeared in the literature since some time, but its(More)