Matteo Mezzena

Learn More
Solid lipid microparticles (SLMs) loaded with high amounts of the sunscreen agent, butyl methoxydibenzoylmethane (avobenzone) were prepared in order to reduce its photoinstability. The microparticles were produced, using carnauba wax as lipidic material and phosphatidylcholine as the surfactant, by the classical melt dispersion method or the spray(More)
The aim of this study was to reduce the photoinstability of butyl methoxydibenzoylmethane (BMDBM), the most widely used UVA filter, by incorporating it in lipid microparticles (LMs) alone or together with the UVB filter octocrylene (OCR), acting also as photostabilizer. Microparticles loaded with BMDBM or with combined BMDBM and OCR were produced by the hot(More)
The sunscreen agent, butyl methoxydibenzoylmethane (BMDBM), one of the most widely used UV-A filter, undergoes decomposition under sunlight exposure, which is a limiting factor on its overall performance. To reduce the sunscreen photodegradation, this study investigates the incorporation into solid lipid microparticles (SLMs) of BMDBM together with the(More)
BACKGROUND Lipid microparticles loaded with the UVB filter ethylhexyl methoxycinnamate (EHMC) and the UVA filter butyl methoxydibenzoylmethane (BMDBM) were evaluated for their effect on the sunscreen agent's percutaneous penetration. METHODS Microparticles loaded with EHMC or BMDBM were prepared by the melt emulsification technique using stearic acid or(More)
A solid lipid microparticle system containing budesonide was prepared by oil in water emulsification followed by spray drying. The solid lipid system was studied in terms of morphology, particle size distribution, crystallinity, thermal properties, aerosol performance, and dissolution/diffusion release. The microparticle system was also compared to(More)
The aim of the study was to investigate the effect of the natural antioxidant quercetin on the photostability of the most widely used combination of UVA (320-400 nm) and UVB (290-320 nm) filters, respectively butyl methoxydibenzoylmethane (BMDBM) and octyl methoxycinnamate (OMC). In order to reproduce the conditions prevalent in commercial sunscreen(More)
Lipid microparticles loaded with the flavonoid, quercetin were developed in order to enhance its stability in topical formulations. The microparticles were produced using tristearin as the lipid material and phosphatidylcholine as the emulsifier. The obtained lipoparticles were characterized by release studies, scanning electron microscopy and powder X-ray(More)
The objective of this study was to prepare solid lipid microparticles (SLMs) loaded with the polar adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA). The microparticles were produced by the conventional hot emulsion technique, using different lipidic carriers (tristearin, glyceryl behenate and stearic acid) and hydrogenated phosphatidylcholine as(More)
Lipid microparticles (lipospheres) loaded with butyl methoxydibenzoylmethane (BMDBM), a widely used UV-A sunscreen agent, were prepared by melt technique and evaluated for skin permeation both in vivo, by tape stripping method, and in vitro, by a flow-through diffusion chamber. Following in vivo human skin application of an O/W emulsion containing 2% of(More)
The objective of this study was to prepare lipid microparticles (LMs) loaded with the sunscreen agent, 4-methylbenzylidene camphor (4-MBC), to achieve decreased skin penetration of this UV filter. The microparticles were produced by the melt dispersion technique using tristearin as lipidic material and hydrogenated phosphatidylcholine as the surfactant. The(More)