Learn More
Trees with sufficient nutrition are known to allocate carbon preferentially to aboveground plant parts. Our global study of 49 forests revealed an even more fundamental carbon allocation response to nutrient availability: forests with high-nutrient availability use 58 ± 3% (mean ± SE; 17 forests) of their photosynthates for plant biomass production (BP),(More)
Forests strongly aaect climate through the exchange of large amounts of atmospheric CO 2 (ref. 1). The main drivers of spatial variability in net ecosystem production (NEP) on a global scale are, however, poorly known. As increasing nutrient availability increases the production of biomass per unit of photosynthesis 2 and reduces heterotrophic 3 respiration(More)
Recent temperature increases have elicited strong phenological shifts in temperate tree species, with subsequent effects on photosynthesis. Here, we assess the impact of advanced leaf flushing in a winter warming experiment on the current year's senescence and next year's leaf flushing dates in two common tree species: Quercus robur L. and Fagus sylvatica(More)
Most manipulation experiments simulating global change in tundra were short-term or did not measure plant growth directly. Here, we assessed the growth of three shrubs (Cassiope tetragona, Empetrum hermaphroditum and Betula nana) at a subarctic heath in Abisko (Northern Sweden) after 22 years of warming (passive greenhouses), fertilisation (nutrients(More)
Reviews of the current statuses of forests and the impacts of climate change on forests exist at the (sub)continental scale, but rarely at country and regional levels, meaning that information on causal factors, their impacts, and specific regional properties is often inconsistent and lacking in depth. Here, we present the current status of forest(More)
Few studies have assessed directly the impact of warming on plant growth and biomass production in the High Arctic. Here, we aimed to investigate the impact of 7 years of warming (open greenhouses) on the aboveground relative growth rate (RGR) of Cassiope tetragona and Salix arctica in North-Eastern Greenland. RGR was assessed for apical (leaves, stem,(More)
Stand age, water availability, and the length of the warm period are the most influencing controls of forest structure, functioning, and efficiency. We aimed to discern the distribution and controls of plant biomass, carbon fluxes, and resource-use efficiencies of forest ecosystems ranging from boreal to tropical forests. We analysed a global forest(More)
Different multiple linear regression models of maximum leaf area index (LAImax) based on stand characteristics, site quality, meteorological variables and their combinations were constructed and cross-validated for three economically important tree species in Flanders, Belgium: European beech (Fagus sylvatica L.), Pedunculate oak (Quercus robur L.) and(More)
Budburst phenology is a key driver of ecosystem structure and functioning, and it is sensitive to global change. Both cold winter temperatures (chilling) and spring warming (forcing) are important for budburst. Future climate warming is expected to have a contrasting effect on chilling and forcing, and subsequently to have a non-linear effect on budburst(More)