Learn More
Accurate and scalable simulation has historically been a key enabling factor for systems research. We present TOSSIM, a simulator for TinyOS wireless sensor networks. By exploiting the sensor network domain and TinyOS's design, TOSSIM can capture network behavior at a high fidelity while scaling to thousands of nodes. By using a probabilistic bit error(More)
We present TinyOS, a flexible, application-specific operating system for sensor networks, which form a core component of ambient intelligence systems. Sensor networks consist of (potentially) thousands of tiny, low-power nodes, each of which execute concurrent, reactive programs that must operate with severe memory and power constraints. The sensor network(More)
We present <i>nesC</i>, a programming language for networked embedded systems that represent a new design space for application developers. An example of a networked embedded system is a sensor network, which consists of (potentially) thousands of tiny, low-power "motes," each of which execute concurrent, reactive programs that must operate with severe(More)
We propose a new design for highly concurrent Internet services, which we call the <i>staged event-driven architecture</i> (SEDA). SEDA is intended to support massive concurrency demands and simplify the construction of well-conditioned services. In SEDA, applications consist of a network of event-driven <i>stages</i> connected by explicit <i>queues</i>.(More)
Developing sensor network applications demands a new set of tools to aid programmers. A number of simulation environments have been developed that provide varying degrees of scalability, realism, and detail for understanding the behavior of sensor networks. To date, however, none of these tools have addressed one of the most important aspects of sensor(More)
As wireless sensor networks have emerged as a exciting new area of research in Computer Science, many of the logistical challenges facing those who wish to develop, deploy, and debug applications on realistic large-scale sensor networks have gone unmet. Manually reprogramming nodes, deploying them into the physical environment, and instrumenting them for(More)
We present the first known implementation of elliptic curve cryptography over F2p for sensor networks based on the 8-bit, 7.3828-MHz MICA2 mote. Through instrumentation of UC Berkeley’s TinySec module, we argue that, although secret-key cryptography has been tractable in this domain for some time, there has remained a need for an efficient, secure mechanism(More)
In this paper, we present a robust, decentralized approach to RF-based location tracking. Our system, called MoteTrack, is based on low-power radio transceivers coupled with a modest amount of computation and storage capabilities. MoteTrack does not rely upon any back-end server or network infrastructure: the location of each mobile node is computed using a(More)
We present a science-centric evaluation of a 19-day sensor network deployment at Reventador, an active volcano in Ecuador. Each of the 16 sensors continuously sampled seismic and acoustic data at 100 Hz. Nodes used an event-detection algorithm to trigger on interesting volcanic activity and initiate reliable data transfer to the base station. During the(More)