Learn More
Myosins are motor proteins in cells. They move along actin by changing shape after making stereospecific interactions with the actin subunits. As these are arranged helically, a succession of steps will follow a helical path. However, if the myosin heads are long enough to span the actin helical repeat (approximately 36 nm), linear motion is possible.(More)
Dynein ATPases are microtubule motors that are critical to diverse processes such as vesicle transport and the beating of sperm tails; however, their mechanism of force generation is unknown. Each dynein comprises a head, from which a stalk and a stem emerge. Here we use electron microscopy and image processing to reveal new structural details of dynein c,(More)
Dynein ATPases contain six concatenated AAA modules within the motor region of their heavy chains. Additional regions of sequence are required to form a functional ATPase, which a previous study suggested forms seven or eight subdomains arranged in either a ring or hollow sphere. A more recent homology model of the six AAA modules suggests that these form a(More)
We have used electron microscopy and single-particle image processing to study head conformation in myosin V molecules. We find that in the presence of ATP, many heads have a sharply angled conformation that is rare in its absence. The sharply angled conformation is similar to a myosin II atomic structure proposed to mimic the prepower stroke state. The(More)
Flexible macromolecules pose special difficulties for structure determination by crystallography or NMR. Progress can be made by electron microscopy, but electron cryo-microscopy of unstained, hydrated specimens is limited to larger macromolecules because of the inherently low signal-to-noise ratio. For three-dimensional structure determination, the single(More)
Remodelling the contractile apparatus within smooth muscle cells allows effective contractile activity over a wide range of cell lengths. Thick filaments may be redistributed via depolymerisation into inactive myosin monomers that have been detected in vitro, in which the long tail has a folded conformation. Using negative stain electron microscopy of(More)
Dynein ATPases power diverse microtubule-based motilities. Each dynein motor domain comprises a ring-like head containing six AAA+ modules and N- and C-terminal regions, together with a stalk that binds microtubules. How these subdomains are arranged and generate force remains poorly understood. Here, using electron microscopy and image processing of tagged(More)
All Netflix Prize algorithms proposed so far are prohibitively costly for large-scale production systems. In this paper, we describe an efficient dataflow implementation of a collaborative filtering (CF) solution to the Netflix Prize problem [1] based on weighted coclustering [5]. The dataflow library we use facilitates the development of sophisticated(More)
Rapidly emerging evidence continues to describe an intimate and causal relationship between sleep and affective brain regulation. These findings are mirrored by long-standing clinical observations demonstrating that nearly all mood and anxiety disorders co-occur with one or more abnormalities of sleep. This review aims to (1) provide a synthesis of recent(More)
Transmission electron microscopy (EM) is a versatile technique that can be used to image biological specimens ranging from intact eukaryotic cells to individual proteins >150kDa. There are several strategies for preparing samples for imaging by EM, including negative staining and cryogenic freezing. In the last few years, cryo-EM has undergone a 'resolution(More)