Learn More
Dynein ATPases are microtubule motors that are critical to diverse processes such as vesicle transport and the beating of sperm tails; however, their mechanism of force generation is unknown. Each dynein comprises a head, from which a stalk and a stem emerge. Here we use electron microscopy and image processing to reveal new structural details of dynein c,(More)
Myosins are motor proteins in cells. They move along actin by changing shape after making stereospecific interactions with the actin subunits. As these are arranged helically, a succession of steps will follow a helical path. However, if the myosin heads are long enough to span the actin helical repeat (approximately 36 nm), linear motion is possible.(More)
Dynein ATPases contain six concatenated AAA modules within the motor region of their heavy chains. Additional regions of sequence are required to form a functional ATPase, which a previous study suggested forms seven or eight subdomains arranged in either a ring or hollow sphere. A more recent homology model of the six AAA modules suggests that these form a(More)
We have used electron microscopy and single-particle image processing to study head conformation in myosin V molecules. We find that in the presence of ATP, many heads have a sharply angled conformation that is rare in its absence. The sharply angled conformation is similar to a myosin II atomic structure proposed to mimic the prepower stroke state. The(More)
Flexible macromolecules pose special difficulties for structure determination by crystallography or NMR. Progress can be made by electron microscopy, but electron cryo-microscopy of unstained, hydrated specimens is limited to larger macromolecules because of the inherently low signal-to-noise ratio. For three-dimensional structure determination, the single(More)
Remodelling the contractile apparatus within smooth muscle cells allows effective contractile activity over a wide range of cell lengths. Thick filaments may be redistributed via depolymerisation into inactive myosin monomers that have been detected in vitro, in which the long tail has a folded conformation. Using negative stain electron microscopy of(More)
Apparatus is described for the kinetic investigation of biological reactions by electron cryomicroscopy with time resolution on the order of milliseconds. This involves layering a grid with one reactant and then spraying on a second reactant immediately before freezing. Two-stage mixing can be achieved by mixing two solutions, holding them in a delay line(More)
Transmission electron microscopy (EM) is a versatile technique that can be used to image biological specimens ranging from intact eukaryotic cells to individual proteins >150kDa. There are several strategies for preparing samples for imaging by EM, including negative staining and cryogenic freezing. In the last few years, cryo-EM has undergone a 'resolution(More)
We describe here a second generation apparatus for studying transient reaction conformations in macromolecules and their complexes by electron cryo-microscopy. Reactions are trapped by rapid freezing in times ranging from a few milliseconds to tens of seconds after initiation. Blotting of the electron microscope grid and freezing it in liquid ethane uses(More)