Matt Wachowiak

Learn More
To visualize odorant representations by receptor neuron input to the mouse olfactory bulb, we loaded receptor neurons with calcium-sensitive dye and imaged odorant-evoked responses from their axon terminals. Fluorescence increases reflected activation of receptor neuron populations converging onto individual glomeruli. We report several findings. First,(More)
Genetically encoded probes show great promise in permitting functional imaging of specified neuronal populations in the intact nervous system, yet their in vivo application has been limited. Here, we have targeted expression of synapto-pHluorin, a pH-sensitive protein that reports synaptic vesicle fusion, to olfactory sensory neurons in mouse.(More)
We measured the spatiotemporal aspects of the odor-induced population response in the turtle olfactory bulb using a voltage-sensitive dye, RH414, and a 464-element photodiode array. In contrast with previous studies of population activity using local field potential recordings, we distinguished four signals in the response. The one called DC covered almost(More)
Most sensory stimuli are actively sampled, yet the role of sampling behavior in shaping sensory codes is poorly understood. Mammals sample odors by sniffing, a complex behavior that controls odorant access to receptor neurons. Whether sniffing shapes the neural code for odors remains unclear. We addressed this question by imaging receptor input to the(More)
Presynaptic regulation of transmission at the first olfactory synapse was investigated by selectively imaging axon terminals of receptor neurons in the lobster olfactory lobe and turtle olfactory bulb. In both species, action potential propagation into axon terminals after olfactory nerve stimulation was measured using voltage-sensitive dyes. In addition,(More)
Odorants are first represented in the brain by distributed patterns of activity in the olfactory bulb (OB). Although neurons downstream of sensory inputs respond to odorants with temporally structured activity, sensory inputs to glomeruli are typically described as static maps. Here, we imaged the temporal dynamics of receptor neuron input to the OB with a(More)
Neural activity underlying odor representations in the mammalian olfactory system is strongly patterned by respiratory behavior. These dynamics are central to many models of olfactory information processing. We have found previously that sensory inputs to the olfactory bulb change both their magnitude and temporal structure as a function of sniff frequency.(More)
Input to the central nervous system from olfactory sensory neurons (OSNs) is modulated presynaptically. We investigated the functional organization of this inhibition and its role in odor coding by imaging neurotransmitter release from OSNs in slices and in vivo in mice expressing synaptopHluorin, an optical indicator of vesicle exocytosis. Release from(More)
We sought to characterize how odorants are represented at the level of afferent input to the olfactory bulb of the box turtle, a terrestrial reptile that, like mammals, detects airborne odorants. Using methods developed first in zebrafish, we selectively labeled olfactory receptor neurons with Calcium Green-1 dextran and imaged odorant-evoked input to(More)
Sniffing, a rhythmic inhalation and exhalation of air through the nose, is a behavior thought to play a critical role in shaping how odor information is represented and processed by the nervous system. Although the mouse has become a prominent model for studying olfaction, little is known about sniffing behavior in mice. Here, we characterized mouse(More)