Matt Geisler

Learn More
The complex cellular functions of an organism frequently rely on physical interactions between proteins. A map of all protein-protein interactions, an interactome, is thus an invaluable tool. We present an interactome for Arabidopsis (Arabidopsis thaliana) predicted from interacting orthologs in yeast (Saccharomyces cerevisiae), nematode worm(More)
Aluminum (Al) toxicity in acid soils is a worldwide agricultural problem that severely limits crop productivity through inhibition of root growth. Previously, Arabidopsis mutants with increased Al sensitivity were isolated in order to identify genes important for Al tolerance in plants. One mutant, als3, exhibited extreme root growth inhibition in the(More)
Over 1,600 genes encoding carbohydrate-active enzymes (CAZymes) in the Populus trichocarpa (Torr. & Gray) genome were identified based on sequence homology, annotated, and grouped into families of glycosyltransferases, glycoside hydrolases, carbohydrate esterases, polysaccharide lyases, and expansins. Poplar (Populus spp.) had approximately 1.6 times more(More)
Sugars are central to a plant’s raison d’etre as products of photosynthesis. They are the ultimate source of energy and carbon skeletons for all biomolecules, and they provide the material out of which a plant builds its cell walls, fibers, and wood. Thus, regulation of any activity involved in biosynthesis of sugars, especially Suc (the major transport(More)
The two guard cells of a stoma are produced by a single symmetric division just before terminal differentiation. Recessive mutations in the FOUR LIPS (FLP) gene abnormally induce at least four guard cells in contact with one another. These pattern defects result from a persistence of precursor cell identity that leads to extra symmetric divisions at the end(More)
BACKGROUND AND AIMS Callose involvement in spore development is a plesiomorphic feature of land plants. Correlated light, fluorescence and immuno-electron microscopy was conducted on the developing spores of Physcomitrella patens to probe for callose. Using a bioinformatic approach, the callose synthase (PpCalS) genes were annotated and PpCalS and AtCalS(More)
Sugars are central to a plant’s raison d’etre as products of photosynthesis. They are the ultimate source of energy and carbon skeletons for all biomolecules, and they provide the material out of which a plant builds its cell walls, fibers, and wood. Thus, regulation of any activity involved in biosynthesis of sugars, especially Suc (the major transport(More)
UDP-glucose pyrophosphorylase (UGPase) produces UDP-glucose which is essential for sucrose and polysaccharide synthesis. Using Arabidopsis, we demonstrated that two UGPase genes (UGP1 and UGP2) are differentially expressed in a variety of organs, with UGP1 being pre-dominant. Co-expression analyses of UGP genes suggest that UGP1 is closely co-regulated with(More)
Short motifs of many cis-regulatory elements (CREs) can be found in the promoters of most Arabidopsis genes, and this raises the question of how their presence can confer specific regulation. We developed a universal algorithm to test the biological significance of CREs by first identifying every Arabidopsis gene with a CRE and then statistically(More)
Plant organs are generated from meristems throughout development. Patterning and elaboration of organ primordia occur as a result of organized cell division and expansion, processes that are likely to be controlled, in part, by meristem-derived signals. Communication between the meristem and lateral organs is crucial for meristem maintenance and organ(More)