Matt E. Oates

Learn More
The InterPro database (http://www.ebi.ac.uk/interpro/) is a freely available resource that can be used to classify sequences into protein families and to predict the presence of important domains and sites. Central to the InterPro database are predictive models, known as signatures, from a range of different protein family databases that have different(More)
We present the Database of Disordered Protein Prediction (D(2)P(2)), available at http://d2p2.pro (including website source code). A battery of disorder predictors and their variants, VL-XT, VSL2b, PrDOS, PV2, Espritz and IUPred, were run on all protein sequences from 1765 complete proteomes (to be updated as more genomes are completed). Integrated with(More)
A major bottleneck in our understanding of the molecular underpinnings of life is the assignment of function to proteins. While molecular experiments provide the most reliable annotation of proteins, their relatively low throughput and restricted purview have led to an increasing role for computational function prediction. However, assessing methods for(More)
The most diverse marine ecosystems, coral reefs, depend upon a functional symbiosis between a cnidarian animal host (the coral) and intracellular photosynthetic dinoflagellate algae. The molecular and cellular mechanisms underlying this endosymbiosis are not well understood, in part because of the difficulties of experimental work with corals. The small sea(More)
The seven-transmembrane (7TM) helix fold of G-protein coupled receptors (GPCRs) has been adapted for a wide variety of physiologically important signaling functions. Here, we discuss the diversity in the structured and disordered regions of GPCRs based on the recently published crystal structures and sequence analysis of all human GPCRs. A comparison of the(More)
Transdifferentiation, the process of converting from one cell type to another without going through a pluripotent state, has great promise for regenerative medicine. The identification of key transcription factors for reprogramming is currently limited by the cost of exhaustive experimental testing of plausible sets of factors, an approach that is(More)
We report a daily-updated sequenced/species Tree Of Life (sTOL) as a reference for the increasing number of cellular organisms with their genomes sequenced. The sTOL builds on a likelihood-based weight calibration algorithm to consolidate NCBI taxonomy information in concert with unbiased sampling of molecular characters from whole genomes of all sequenced(More)
We have discovered that positions of splice junctions in genes are constrained by the tolerance for disorder-promoting amino acids in the translated protein region. It is known that efficient splicing requires nucleotide bias at the splice junction; the preferred usage produces a distribution of amino acids that is disorder-promoting. We observe that(More)
We present updates to the SUPERFAMILY 1.75 (http://supfam.org) online resource and protein sequence collection. The hidden Markov model library that provides sequence homology to SCOP structural domains remains unchanged at version 1.75. In the last 4 years SUPERFAMILY has more than doubled its holding of curated complete proteomes over all cellular life,(More)
Genome3D (http://www.genome3d.eu) is a collaborative resource that provides predicted domain annotations and structural models for key sequences. Since introducing Genome3D in a previous NAR paper, we have substantially extended and improved the resource. We have annotated representatives from Pfam families to improve coverage of diverse sequences and added(More)