Matt Craddock

Learn More
In four experiments, we examined the haptic recognition of 3-D objects. In Experiment 1, blindfolded participants named everyday objects presented haptically in two blocks. There was significant priming of naming, but no cost of an object changing orientation between blocks. However, typical orientations of objects were recognized more quickly than(More)
A variety of similarities between visual and haptic object recognition suggests that the two modalities may share common representations. However, it is unclear whether such common representations preserve low-level perceptual features or whether transfer between vision and haptics is mediated by high-level, abstract representations. Two experiments used a(More)
Fixed Field Alternating Gradient accelerators offer much higher acceptances and repetition rates-and therefore higher beam intensities – than synchrotrons, at the cost of more complicated magnet and rf cavity designs. Perhaps because of the difficulty and expense anticipated, early studies never progressed beyond the stage of successful electron models, but(More)
In aperture viewing the field-of-view is restricted, such that only a small part of an image is visible, enforcing serial exploration of different regions of an object in order to successfully recognise it. Previous studies have used either active control or passive observation of the viewing aperture, but have not contrasted the two modes. Active viewing(More)
Two experiments examined the effects of size changes on haptic object recognition. In Experiment 1, participants named one of three exemplars (a standard-size-and-shape, different-size, or different-shape exemplar) of 36 categories of real, familiar objects. They then performed an old/new recognition task on the basis of object identity for the standard(More)
We examined the effects of interstimulus interval (ISI) and orientation changes on the haptic recognition of novel objects, using a sequential shape-matching task. The stimuli consisted of 36 wedge-shaped plastic objects that varied along two shape dimensions (hole/bump and dip/ridge). Two objects were presented at either the same orientation or a different(More)
Until recently induced gamma-band activity (GBA) was considered a neural marker of cortical object representation. However, induced GBA in the electroencephalogram (EEG) is susceptible to artifacts caused by miniature fixational saccades. Recent studies have demonstrated that fixational saccades also reflect high-level representational processes. Do(More)
Emotionally arousing stimuli are known to rapidly draw the brain's processing resources, even when they are task-irrelevant. The steady-state visual evoked potential (SSVEP) response, a neural response to a flickering stimulus which effectively allows measurement of the processing resources devoted to that stimulus, has been used to examine this process of(More)
Visual object processing may follow a coarse-to-fine sequence imposed by fast processing of low spatial frequencies (LSF) and slow processing of high spatial frequencies (HSF). Objects can be categorized at varying levels of specificity: the superordinate (e.g. animal), the basic (e.g. dog), or the subordinate (e.g. Border Collie). We tested whether(More)
The visual system may process spatial frequency information in a low-to-high, coarse-to-fine sequence. In particular, low and high spatial frequency information may be processed via different pathways during object recognition, with LSF information projected rapidly to frontal areas and HSF processed later in visual ventral areas. In an(More)