Learn More
We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth's polar ice sheets. We find that there is good agreement between different satellite methods--especially in(More)
It has been widely hypothesized that a warmer climate in Greenland would increase the volume of lubricating surface meltwater reaching the ice-bedrock interface, accelerating ice flow and increasing mass loss. We have assembled a data set that provides a synoptic-scale view, spanning ice-sheet to outlet-glacier flow, with which to evaluate this hypothesis.(More)
Long-period seismic sources associated with glacier motion have been recently discovered, and an increase in ice flow over the past decade has been suggested on the basis of secular changes in such measurements. Their significance, however, remains uncertain, as a relationship to ice flow has not been confirmed by direct observation. Here we combine(More)
Surface meltwater that reaches the base of an ice sheet creates a mechanism for the rapid response of ice flow to climate change. The process whereby such a pathway is created through thick, cold ice has not, however, been previously observed. We describe the rapid (<2 hours) drainage of a large supraglacial lake down 980 meters through to the bed of the(More)
A major West Antarctic ice stream discharges by sudden and brief periods of very rapid motion paced by oceanic tidal oscillations of about 1 meter. Acceleration to speeds greater than 1 meter per hour and deceleration back to a stationary state occur in minutes or less. Slip propagates at approximately 88 meters per second, suggestive of a shear wave(More)
Recent estimates of Antarctica's present-day rate of ice-mass contribution to changes in sea level range from 31 gigatonnes a year (Gt yr(-1); ref. 1) to 246 Gt yr(-1) (ref. 2), a range that cannot be reconciled within formal errors. Time-varying rates of mass loss contribute to this, but substantial technique-specific systematic errors also exist. In(More)
  • Elizabeth J Petrie, Matt A King, Philip Moore, David A Lavallée
  • 2010
[1] We describe how GPS time series are influenced by higher‐order ionospheric effects over the last solar cycle (1995–2008) and examine implications for geophysical studies. Using 14 years of globally reprocessed solutions, we demonstrate the effect on the reference frame. Including second‐ and third‐order ionospheric terms causes up to 10 mm difference in(More)
—When using airborne LIDAR to produce digital elevation models, the Global Positioning System (GPS) positioning of the LIDAR instrument is often the limiting factor, with accuracies typically quoted as being 10–30 cm. However, a comprehensive analysis of the accuracy and precision of GPS positioning of aircraft over large temporal and spatial scales is(More)
The provision of accurate models of Glacial Isostatic Adjustment (GIA) is presently a priority need in climate studies, largely due to the potential of the Gravity Recovery and Climate Experiment (GRACE) data to be used to determine accurate and continent-wide assessments of ice mass change and hydrology. However, modelled GIA is uncertain due to(More)