Learn More
Reactive species, which mainly include reactive oxygen species (ROS), are products generated as a consequence of metabolic reactions in the mitochondria of eukaryotic cells. In normal cells, low-level concentrations of these compounds are required for signal transduction before their elimination. However, cancer cells, which exhibit an accelerated(More)
Embryonic stem (ES) cells are immortal and present the ability to self-renew while retaining their ability to differentiate. In contrast, most primary cells possess a limited proliferative potential, and when this is exhausted, undergo an irreversible growth arrest termed senescence. In primary cells, senescence can be also triggered by a variety of stress(More)
The transactivation/transformation-domain associated protein (TRRAP) belongs to the Ataxia-telangiectasia mutated (ATM) super-family and has been identified as a cofactor for c-MYC-mediated oncogenic transformation. TRRAP and its yeast homolog (Tra1p) are components of histone acetyltransferase (HAT) complexes, SAGA (refs. 2,4,5), PCAF (ref. 3) and NuA4(More)
Overexpression of Ras(G12V) in primary cells induces a permanent growth arrest called oncogene-induced senescence (OIS) that serves as a fail-safe mechanism against malignant transformation. We have performed a genome-wide small interfering RNA (siRNA) screen and a microRNA (miRNA) screen to identify mediators of OIS and show that siRNA-mediated knockdown(More)
MicroRNAs (miRNAs) play important roles in diverse biological processes and are emerging as key regulators of tumorigenesis and tumor progression. To explore the dysregulation of miRNAs in breast cancer, a genome-wide expression profiling of 939 miRNAs was performed in 50 breast cancer patients. A total of 35 miRNAs were aberrantly expressed between breast(More)
With the idea to discover novel genes involved in proliferation, we have performed a genome-wide loss-of-function genetic screen to identify additional putative tumor suppressor genes. We have previously identified five genes belonging to different biochemical families. In this report, we focused on the study of one of these genes designated(More)
Cancer is controlled not only by genetic events but also by epigenetic events. The active acquisition of epigenetic changes is a poorly understood but very important process in mammalian development, differentiation, and disease. It is well established that epigenetic events are controlled by a specific subgroup of proteins, such as DNA methyltransferases,(More)
An unbiased screen for genes that can immortalize mouse embryonic fibroblasts identified the glycolytic enzyme phosphoglycerate mutase (PGM). A 2-fold increase in PGM activity enhances glycolytic flux, allows indefinite proliferation, and renders cells resistant to ras-induced arrest. Glucosephosphate isomerase, another glycolytic enzyme, displays similar(More)
Colon cancer has been proved to be an excellent model to identify and to study the different genetic alterations taking part in its development. BRCA1, a susceptibility gene for breast cancer, has been identified. Evidence of a significant risk for colon cancer in BRCA1-linked families has been reported. We undertook the present study to investigate the(More)
Short oligonucleotide mass analysis (SOMA) is a technique by which small sequences of mutated and wild-type DNA, produced by PCR amplification and restriction digestion, are characterized by HPLC-electrospray ionization tandem mass spectrometry. We have adapted the method to specifically detect two common point mutations at codon 12 of the c-K-ras gene.(More)