Matija Milanic

Learn More
A widely used approach to solving the inverse problem in electrocardiography involves computing potentials on the epicardium from measured electrocardiograms (ECGs) on the torso surface. The main challenge of solving this electrocardiographic imaging (ECGI) problem lies in its intrinsic ill-posedness. While many regularization techniques have been developed(More)
Electrocardiographic imaging (ECGI) is a widely used method of computing potentials on the epicardium from measured or simulated potentials on the torso surface. The main challenge of the electrocardiographic imaging problem lies in its intrinsic ill-posedness, and many regularization techniques have been developed to smooth out the solution. It is still an(More)
We report on the first experimental evaluation of pulsed photothermal radiometry (PPTR) using a spectrally composite kernel matrix in signal analysis. Numerical studies have indicated that this approach could enable PPTR temperature profiling in watery tissues with better accuracy and stability as compared to the customary monochromatic approximation. By(More)
BACKGROUND AND OBJECTIVE Despite application of cryogen spray (CS) precooling, customary treatment of port wine stain (PWS) birthmarks with a single laser pulse does not result in complete lesion blanching for a majority of patients. One obvious reason is nonselective absorption by epidermal melanin, which limits the maximal safe radiant exposure. Another(More)
Although photothermal radiometric (PTR) measurements commonly employ broad-band signal acquisition to increase the signal-to-noise ratio, all reported studies apply a fixed infrared (IR) absorption coefficient to simplify the involved signal analysis. In samples with large spectral variation of micro(lambda) in mid-IR, which includes most biological(More)
Pulsed photothermal radiometry (PPTR) allows noninvasive determination of laser-induced temperature depth profiles in optically scattering layered structures. The obtained profiles provide information on spatial distribution of selected chromophores such as melanin and hemoglobin in human skin. We apply the described approach to study time evolution of(More)
Spectral variation of the sample absorption coefficient in mid-infrared (muIR) demands caution in photothermal radiometric measurements, because a constant muIR is regularly assumed in inverse analysis of the acquired signals. Adverse effects of such approximation were recently demonstrated in numerical simulations of pulsed photothermal radiometric (PPTR)(More)
Hyperspectral imaging combines high spectral and spatial resolution in one modality. This imaging technique is a promising tool for objective medical diagnostics. However, to be attractive in a clinical setting, the technique needs to be fast and accurate. Hyperspectral imaging can be used to analyze tissue properties using spectroscopic methods, and is(More)
We present a three-dimensional Monte Carlo model of optical transport in skin with a novel approach to treatment of side boundaries of the volume of interest. This represents an effective way to overcome the inherent limitations of "escape" and "mirror" boundary conditions and enables high-resolution modeling of skin inclusions with complex geometries and(More)
It has been generally recognized that understanding the molecular basis of some important cellular processes is hampered by the lack of knowledge of forces that drive spontaneous formation/disruption of G-quadruplex structures in guanine-rich DNA sequences. According to numerous biophysical and structural studies G-quadruplexes may occur in the presence of(More)