Learn More
During development of the nervous system, the tip of a growing axon, the growth cone (GC), must respond accurately to stimuli that direct its growth. This axonal navigation depends on extracellular concentration gradients of numerous guidance cues, including GABA. GCs can detect even weak directional signals, yet the mechanisms underlying this sensitivity(More)
This article describes techniques of vocal forgery able to affect automatic speaker recognition system in a forensic context. Vocal forgery covers two main aspects: voice transformation and voice conversion. Concerning voice transformation, this article proposes an automatic analysis of four specific disguised voices in order to detect the forgery and, for(More)
Difficulties in culturing cells inside microchannels is a major obstacle for the wide use of microfluidic technology in cell biology. Here, we present a simple and versatile method to interface closed microchannels with cellular and multicellular systems. Our approach, based on microfluidic stickers which can adhere to wet glass coverslips, eliminates the(More)
Nerve growth cones (GCs) are chemical sensors that convert graded extracellular cues into oriented axonal motion. To ensure a sensitive and robust response to directional signals in complex and dynamic chemical landscapes, GCs are presumably able to amplify and filter external information. How these processing tasks are performed remains however poorly(More)
Synthetic gene circuits are emerging as a versatile means to target cancer with enhanced specificity by combinatorial integration of multiple expression markers. Such circuits must also be tuned to be highly sensitive because escape of even a few cells might be detrimental. However, the error rates of decision-making circuits in light of cellular(More)
We study the effect of surfactants on the deposits formed after the evaporation of colloidal suspension drops, at initial concentrations lower than the critical micellar concentrations, for various particle/surfactant mixtures. We show that the surfactant-mediated interactions between particles and the liquid-gas (LG) and liquid-solid (LS) interfaces,(More)
External control of DNA melting and hybridization, a key step in bio- and DNA nanotechnology, is commonly achieved with temperature. The use of light to direct this process is a challenging alternative, which has been only possible with a DNA modification, such as covalent grafting or mismatch introduction, so far. Here we describe the first photocontrol of(More)
In this paper we first introduce a novel fabrication process, which allows for easy integration of thin track-etched nanoporous membranes, within 2D or 3D microchannel networks. In these networks, soluble chemical compounds can diffuse out of the channels through well-defined and spatially organized microfabricated porous openings. Interestingly, multiple(More)
Liquid marbles, that is, liquid drops coated by a hydrophobic powder, do not wet any solid or liquid substrate, making their transport and manipulation both highly desirable and challenging. Herein, we describe the light-driven transport of floating liquid marbles and emphasize a surprising motion behavior. Liquid marbles are deposited on a water solution(More)
The coffee-ring effect denotes the accumulation of particles at the edge of an evaporating sessile drop pinned on a substrate. Because it can be detected by simple visual inspection, this ubiquitous phenomenon can be envisioned as a robust and cost-effective diagnostic tool. Toward this direction, here we systematically analyze the deposit morphology of(More)