Learn More
Near-Infrared Spectroscopy (NIRS) measures the functional hemodynamic response occurring at the surface of the cortex. Large pial veins are located above the surface of the cerebral cortex. Following activation, these veins exhibit oxygenation changes but their volume likely stays constant. The back-reflection geometry of the NIRS measurement renders the(More)
Near infrared spectroscopy (NIRS) is a functional imaging technique allowing measurement of local cerebral oxygenation. This modality is particularly adapted to critically ill neonates, as it can be used at the bedside and is a suitable and noninvasive tool for carrying out longitudinal studies. However, NIRS is sensitive to the imaged medium and(More)
Diffuse optical imaging (DOI) is a non invasive technique allowing the recovery of hemodynamic changes in the brain. Due to the diffusive nature of photon propagation in turbid media and the fact that cerebral tissues are located around 1.5 cm under the adult human scalp, DOI measurements are subject to partial volume errors. DOI measurements are also(More)
In patients presenting with cerebral ischemic injury, the outcome of injured brain tissue quantified as decreased apparent diffusion coefficient (ADC) may depend on associated alterations in cerebral blood perfusion (CBP). This study proposes a non-biased method to quantify associations between ADC and CBP in newborns with global or focal cerebral ischemia.(More)
Pathophysiologic mechanisms involved in neonatal hypoxic ischemic encephalopathy (HIE) are associated with complex changes of blood flow and metabolism. Therapeutic hypothermia (TH) is effective in reducing the extent of brain injury, but it remains uncertain how TH affects cerebral blood flow (CBF) and metabolism. Ten neonates undergoing TH for HIE and(More)
Little is known about cerebral blood flow, cerebral blood volume (CBV), oxygenation, and oxygen consumption in the premature newborn brain. We combined quantitative frequency-domain near-infrared spectroscopy measures of cerebral hemoglobin oxygenation (SO(2)) and CBV with diffusion correlation spectroscopy measures of cerebral blood flow index (BF(ix)) to(More)
The near infrared spectroscopy (NIRS) frequency-domain multi-distance (FD-MD) method allows for the estimation of optical properties in biological tissue using the phase and intensity of radiofrequency modulated light at different source-detector separations. In this study, we evaluated the accuracy of this method to retrieve the absorption coefficient of(More)
Understanding the evolution of regional and hemispheric asymmetries in the early stages of life is essential to the advancement of developmental neuroscience. By using 2 noninvasive optical methods, frequency-domain near-infrared spectroscopy and diffuse correlation spectroscopy, we measured cerebral hemoglobin oxygenation (SO(2)), blood volume (CBV), an(More)
Perinatal brain injury remains a significant cause of infant mortality and morbidity, but there is not yet an effective bedside tool that can accurately screen for brain injury, monitor injury evolution, or assess response to therapy. The energy used by neurons is derived largely from tissue oxidative metabolism, and neural hyperactivity and cell death are(More)
Diffuse optical imaging uses light to provide a surrogate measure of neuronal activation through the hemodynamic responses. The relative low absorption of near-infrared light enables measurements of hemoglobin changes at depths reaching the first centimeter of the cortex. The rapid rate of acquisition and the access to both oxy and deoxy-hemoglobin leads to(More)