Learn More
Selective predation of aposematic signals is expected to promote phenotypic uniformity. But while these signals may be uniform within a population, numerous species display impressive variations in warning signals among adjacent populations. Predators from different localities who learn to avoid distinct signals while performing intense selection on others(More)
Despite accumulating evidence for selection within natural systems, the importance of random genetic drift opposing Wright's and Fisher's views of evolution continue to be a subject of controversy. The geographical diversification of aposematic signals appears to be a suitable system to assess the factors involved in the process of adaptation since both(More)
Whether the evolution of similar aposematic signals in different unpalatable species (i.e. Müllerian mimicry) is because of phenotypic convergence or advergence continues to puzzle scientists. The poison dart frog Ranitomeya imitator provides a rare example in support of the hypothesis of advergence: this species was believed to mimic numerous distinct(More)
Genetic dominance in polymorphic loci may respond to selection; however, the evolution of dominance in complex traits remains a puzzle. We analyse dominance at a wing-patterning supergene controlling local mimicry polymorphism in the butterfly Heliconius numata. Supergene alleles are associated with chromosomal inversion polymorphism, defining ancestral(More)
The Heliconius butterflies are a widely studied adaptive radiation of 46 species spread across Central and South America, several of which are known to hybridize in the wild. Here, we present a substantially improved assembly of the Heliconius melpomene genome, developed using novel methods that should be applicable to improving other genome assemblies(More)
Characterizing fitness landscapes associated with polymorphic adaptive traits enables investigation of mechanisms allowing transitions between fitness peaks. Here, we explore how natural selection can promote genetic mechanisms preventing heterozygous phenotypes from falling into non-adaptive valleys. Polymorphic mimicry is an ideal system to investigate(More)
This study reports new information on interactions between two sympatric ant species, the plant-ant Azteca alfari (Dolichoderinae) living in association with the myrmecophyte Cecropia obtusa (Cecropiaceae) and Camponotus blandus (Formicinae), a ground-nesting, arboreal-foraging species. Workers of A. alfari forage only on the foliage and the upper parts of(More)
Positive frequency-dependent selection (FDS) is a selection regime where the fitness of a phenotype increases with its frequency, and it is thought to underlie important adaptive strategies resting on signaling and communication. However, whether and how positive FDS truly operates in nature remains unknown, which hampers our understanding of signal(More)
Identifying the genetic basis of adaptive variation is challenging in non-model organisms and quantitative real time PCR. is a useful tool for validating predictions regarding the expression of candidate genes. However, comparing expression levels in different conditions requires rigorous experimental design and statistical analyses. Here, we focused on the(More)
Due to their preference for undisturbed habitats, the butterflies of the genus Melinaea are promising indicators of ecological conditions. Here we describe 12 polymorphic microsatellite markers, with 3–26 alleles per locus, an observed heterozygosity of 0.138–0.889, and an expected heterozygosity of 0.400–0.970. These markers will prove useful in(More)
  • 1