Mathias Wawer

Learn More
The high rate of clinical response to protein-kinase-targeting drugs matched to cancer patients with specific genomic alterations has prompted efforts to use cancer cell line (CCL) profiling to identify additional biomarkers of small-molecule sensitivities. We have quantitatively measured the sensitivity of 242 genomically characterized CCLs to an Informer(More)
UNLABELLED Identifying genetic alterations that prime a cancer cell to respond to a particular therapeutic agent can facilitate the development of precision cancer medicines. Cancer cell-line (CCL) profiling of small-molecule sensitivity has emerged as an unbiased method to assess the relationships between genetic or cellular features of CCLs and(More)
We introduce SARANEA, an open-source Java application for interactive exploration of structure-activity relationship (SAR) and structure-selectivity relationship (SSR) information in compound sets of any source. SARANEA integrates various SAR and SSR analysis functions and utilizes a network-like similarity graph data structure for visualization. The(More)
The problem of how to explore structure-activity relationships (SARs) systematically is still largely unsolved in medicinal chemistry. Recently, data analysis tools have been introduced to navigate activity landscapes and to assess SARs on a large scale. Initial investigations reveal a surprising heterogeneity among SARs and shed light on the relationship(More)
The study of structure-activity relationships (SARs) of small molecules is of fundamental importance in medicinal chemistry and drug design. Here, we introduce an approach that combines the analysis of similarity-based molecular networks and SAR index distributions to identify multiple SAR components present within sets of active compounds. Different(More)
The study of compound structure-activity relationships (SARs) is one of the central themes in medicinal chemistry. SAR information is analyzed in different contexts, from screening and hit-to-lead to lead optimization projects. For the exploration of SARs, the concept of an activity landscape, which integrates molecular similarity and potency information,(More)
While acute myeloid leukemia (AML) comprises many disparate genetic subtypes, one shared hallmark is the arrest of leukemic myeloblasts at an immature and self-renewing stage of development. Therapies that overcome differentiation arrest represent a powerful treatment strategy. We leveraged the observation that the majority of AML, despite their genetically(More)
A computational molecular network analysis of various high-throughput screening (HTS) data sets including inhibition assays and cell-based screens organizes screening hits according to different local structure-activity relationships (SARs). The resulting network representations make it possible to focus on different local SAR environments in screening(More)
Antimalarial drugs have thus far been chiefly derived from two sources-natural products and synthetic drug-like compounds. Here we investigate whether antimalarial agents with novel mechanisms of action could be discovered using a diverse collection of synthetic compounds that have three-dimensional features reminiscent of natural products and are(More)
Small-molecule probes can illuminate biological processes and aid in the assessment of emerging therapeutic targets by perturbing biological systems in a manner distinct from other experimental approaches. Despite the tremendous promise of chemical tools for investigating biology and disease, small-molecule probes were unavailable for most targets and(More)