Mathias Sprinzl

Learn More
Maintained at the Universitat Bayreuth, Bayreuth, Germany, the Compilation of tRNA Sequences and Sequences of tRNA Genes is accessible at the URL http://www.tRNA.uni-bayreuth.de with mirror site located at the Institute of Protein Research, Pushchino, Russia (http://alpha.protres.ru/trnadbase). The compilation is a searchable, periodically updated database(More)
One of the first specialized collections of nucleic acid sequences in life sciences was the 'compilation of tRNA sequences and sequences of tRNA genes' (http://www.trna.uni-bayreuth.de). Here, an updated and completely restructured version of this compilation is presented (http://trnadb.bioinf.uni-leipzig.de). The new database, tRNAdb, is hosted and(More)
The crystal structure of intact elongation factor Tu (EF-Tu) from Thermus thermophilus has been determined and refined at an effective resolution of 1.7 A, with incorporation of data extending to 1.45 A. The effector region, including interaction sites for the ribosome and for transfer RNA, is well defined. Molecular mechanisms are proposed for transduction(More)
A NADH oxidase has been purified from the extreme thermophile Thermus thermophilus HB8 by several chromatographic steps. The purified enzyme was essentially homogeneous as judged by gel electrophoresis under denaturing conditions and by determination of the N-terminal amino acids sequence. It is a monomeric flavin-adenine-dinucleotide-containing(More)
Several elongation factors involved in protein synthesis are GTPases that share structural and mechanistic homology with the large family of proteins including Ras and heterotrimeric receptor-coupled G proteins. The structure of elongation factor Tu (EF-Tu) from thermophilic bacteria, in its 'active' GTP-bound form, has recently been solved by X-ray(More)
In order to study nucleotide exchange mechanisms in GTP-binding proteins, we have determined the crystal structure of the complex formed by the elongation factor Tu (EF-Tu) and its exchange factor Ts (EF-Ts) from Thermus thermophilus. The complex is a dyad symmetrical heterotetramer in which each EF-Tu, through a bipartite interface, interacts with two(More)
This compilation presents in a small space the tRNA sequences so far published. The numbering of tRNAPhe from yeast is used following the rules proposed by the participants of the Cold Spring Harbor Meeting on tRNA 1978 (1,2;Fig. 1). This numbering allows comparisons with the three dimensional structure of tRNAPhe. The secondary structure of tRNAs is(More)
A method is presented by which the site of primary attachment of the amino acids with respect to the 2'- or 3'-hydroxyl group of the terminal adenosine of E. coli tRNAs can be determined. It is found that the aminoacyl-tRNA synthetases (EC 6.1.1.-) with specificity for Arg, Asn, Ile, Leu, Met, Phe, Thr, Trp, and Val attach the amino acid to the 2'-position;(More)
In order to elucidate the functional role of the modified uridines at position 54 of tRNA, the 270 MHz high-field proton NMR spectra of methionine tRNAs from E. coli, from a mutant thereof, and from T. thermophilus, containing ribothymidine, uridine and 2-thioribothymidine, respectively, have been measured as a function of temperature. A comparison of the(More)
Prokaryotic class I release factors (RFs) respond to mRNA stop codons and terminate protein synthesis. They interact with the ribosomal decoding site and the peptidyl-transferase centre bridging these 75 A distant ribosomal centres. For this an elongated RF conformation, with partially unfolded core domains II.III.IV is required, which contrasts the known(More)