Mathias Scharinger

Learn More
Slow neural oscillations (~1-15 Hz) are thought to orchestrate the neural processes of spoken language comprehension. However, functional subdivisions within this broad range of frequencies are disputed, with most studies hypothesizing only about single frequency bands. The present study utilizes an established paradigm of spoken word recognition (lexical(More)
Mammalian cortex is known to contain various kinds of spatial encoding schemes for sensory information including retinotopic, somatosensory, and tonotopic maps. Tonotopic maps are especially interesting for human speech sound processing because they encode linguistically salient acoustic properties. In this study, we mapped the entire vowel space of a(More)
Complex sounds vary along a number of acoustic dimensions. These dimensions may exhibit correlations that are familiar to listeners due to their frequent occurrence in natural sounds-namely, speech. However, the precise mechanisms that enable the integration of these dimensions are not well understood. In this study, we examined the categorization of novel(More)
Auditory categorization is a vital skill involving the attribution of meaning to acoustic events, engaging domain-specific (i.e., auditory) as well as domain-general (e.g., executive) brain networks. A listener's ability to categorize novel acoustic stimuli should therefore depend on both, with the domain-general network being particularly relevant for(More)
The precise neural mechanisms underlying speech sound representations are still a matter of debate. Proponents of 'sparse representations' assume that on the level of speech sounds, only contrastive or otherwise not predictable information is stored in long-term memory. Here, in a passive oddball paradigm, we challenge the neural foundations of such a(More)
PURPOSE Speech perception can be described as the transformation of continuous acoustic information into discrete memory representations. Therefore, research on neural representations of speech sounds is particularly important for a better understanding of this transformation. Speech perception models make specific assumptions regarding the representation(More)
Speech signals are often compromised by disruptions originating from external (e.g., masking noise) or internal (e.g., inaccurate articulation) sources. Speech comprehension thus entails detecting and replacing missing information based on predictive and restorative neural mechanisms. The present study targets predictive mechanisms by investigating the(More)
Research in speech perception and language comprehension has shown that the processing and recognition of a word (the target) is facilitated if a related word (the prime) precedes it. This effect is observable even if the prime only consists of a word-initial fragment (e.g. bor- facilitates the recognition of border). The fragment priming paradigm has(More)
Research on the neuronal underpinnings of speaker identity recognition has identified voice-selective areas in the human brain with evolutionary homologues in non-human primates who have comparable areas for processing species-specific calls. Most studies have focused on estimating the extent and location of these areas. In contrast, relatively few(More)