Mathias O. Senge

Learn More
Photodynamic therapy (PDT) has developed over last century and is now becoming a more widely used medical tool having gained regulatory approval for the treatment of various diseases such as cancer and macular degeneration. It is a two-step technique in which the delivery of a photosensitizing drug is followed by the irradiation of light. Activated(More)
A crucial factor in choosing a porphyrin or analogous photosensitizer for photodynamic therapy (PDT) is its ability to incorporate into the cells. For hydrophobic compounds that partition passively into the cytoplasmic membrane, a partition coefficient between an organic solvent and water, P, is one factor that could be used to predict the molecule's(More)
A novel single step assay approach to screen a library of photdynamic therapy (PDT) compounds was developed. Utilizing high content analysis (HCA) technologies several robust cellular parameters were identified, which can be used to determine the phototoxic effects of porphyrin compounds which have been developed as potential anticancer agents directed(More)
5,10,15,20-Tetrakis(3-hydroxyphenyl)chlorin (mTHPC, Temoporfin) is a widely investigated second generation photosensitizer. Its initial use in solution form (Foscan®) is now complemented by nanoformulations (Fospeg®, Foslip®) and new chemical derivatives related to the basic hydroxyphenylporphyrin framework. Advances in formulation, chemical modifications(More)
Advances in the synthesis of unsymmetrically meso substituted porphyrins are based on the development of new total syntheses and porphyrin functionalization methods. These methods have replaced earlier mixed condensation reactions and give synthetic access to almost any desired meso-substituted porphyrin. They include the complete series of porphyrin(More)
Chlorophylls are a fundamental class of tetrapyrroles and function as the central reaction center, accessory and photoprotective pigments in photosynthesis. Their unique individual photochemical properties are a consequence of the tetrapyrrole macrocycle, the structural chemistry and coordination behavior of the phytochlorin system, and specific substituent(More)
The functional versatility of tetrapyrroles as natural cofactors is related to their conformational flexibility where manipulation of the macrocycle conformation allows a fine-tuning of their physicochemical properties. This feature article gives a personal account of the synthesis and solid state structural characterization of highly substituted,(More)
As the world strives to create a more sustainable environment, green chemistry has come to the fore in attempts to minimize the use of hazardous materials and shift the focus towards renewable sources. Chlorophylls, being the definitive "green" chemical are rarely used for such purposes and this article focuses on the exploitation of this natural resource,(More)