Learn More
While the classical, wavelike behavior of light ~interference and diffraction! has been easily observed in undergraduate laboratories for many years, explicit observation of the quantum nature of light ~i.e., photons! is much more difficult. For example, while well-known phenomena such as the photoelectric effect and Compton scattering strongly suggest the(More)
Vibrational levels of the recently observed high-spin transition (1 Πu5-1 Πg5) of dicarbon [P. Bornhauser et al., J. Chem. Phys. 142, 094313 (2015)] are explored by applying non-linear double-resonant four-wave mixing and laser-induced fluorescence methods. The deperturbation of the d Πg3, υ = 8 and 1 Πg5, υ = 3 states results in accurate molecular(More)
The first high-spin transition in C2 (1 (5)Πu - 1 (5)Πg) is observed by perturbation-facilitated optical-optical double resonance spectroscopy. The experiment is performed by applying unfolded two-color resonant four-wave mixing. C2 radicals in the initial a (3)Πu, v = 5 state are produced by using a discharge source in a molecular beam environment. The(More)
2×2 parallel fed and 3×3 serial fed patch antenna arrays on a benzocyclobutene (BCB) polymer layer are integrated with a 70 μm wide, dry etched, double metal waveguide quantum cascade laser, operating at about 1.9 THz. The BCB surrounds the quantum cascade laser ridge and is planarized to fit precisely its height. The patch antenna arrays emit a linearly(More)
  • 1