Mathew Patenaude

  • Citations Per Year
Learn More
A series of synthetic oligomers (based on the thermosensitive polymer poly(N-isopropylacrylamide) and carbohydrate polymers (including hyaluronic acid, carboxymethyl cellulose, dextran, and methylcellulose) were functionalized with hydrazide or aldehyde functional groups and mixed using a double-barreled syringe to create in situ gelling,(More)
Hydrogels that can form spontaneously via covalent bond formation upon injection in vivo have recently attracted significant attention for their potential to address a variety of biomedical challenges. This review discusses the design rules for the effective engineering of such materials, and the major chemistries used to form injectable, in situ gelling(More)
Injectable, in situ-gelling magnetic composite materials have been fabricated by using aldehyde-functionalized dextran to cross-link superparamagnetic nanoparticles surface-functionalized with hydrazide-functionalized poly(N-isopropylacrylamide) (pNIPAM). The resulting composites exhibit high water contents (82-88 wt.%) while also displaying significantly(More)
BACKGROUND Although arthralgia is a known adverse effect of aromatase inhibitor (ai) treatment in postmenopausal breast cancer patients, few studies have carried out a comprehensive evaluation of the nature, onset, and incidence of musculoskeletal (msk) pain in these patients. We therefore used a pilot study to identify conditions or markers predictive of(More)
Injectable PEG-analogue hydrogels based on poly(oligoethylene glycol methacrylate) have been developed based on complementary hydrazide and aldehyde reactive linear polymer precursors. These hydrogels display the desired biological properties of PEG, form covalent networks in situ following injection, and are easily modulated for improved control over their(More)
Injectable, covalently in situ forming hydrogels based on poly(N-isopropylacrylamide) have been designed on the basis of mixing hydrazide-functionalized nucleophilic precursor polymers with electrophilic precursor polymers functionalized with a combination of ketone (slow reacting) and aldehyde (fast reacting) functional groups. By tuning the ratio of(More)
Cell adhesion to biomaterials can be mediated in part by mechanisms aside from the traditionally recognized opsinization and integrin binding mechanisms. In this study, we investigated the role of scavenger receptor A (SR-A) in leukocyte binding to a series of well-controlled polyanionic and uncharged hydrogels based on a poly(N-isopropylacrylamide)(More)
The potential of poly(oligoethylene glycol methacrylate) (POEGMA) hydrogels with varying thermosensitivities as soft materials for biomedical applications is demonstrated. Hydrogels are prepared from hydrazide and aldehyde functionalized POEGMA precursors, yielding POEGMA hydrogels with a volume phase transition temperature (VPTT) below (PO0), close to(More)
  • 1