Mathew L. A. Hayward

Learn More
Biogenic materials are produced by microorganisms and are typically found in a nanophase state. As such, they are difficult to characterize structurally. In this report, we demonstrate how high-energy X-ray diffraction and atomic pair distribution function analysis can be used to determine the atomic-scale structures of MnO(x) produced by bacteria and(More)
First-principles calculations of the electronic band structure and lattice dynamics for the new superconductor MgB (2) are carried out and found to be in excellent agreement with our inelastic neutron scattering measurements. The numerical results reveal that the E(2g) in-plane boron phonons near the zone center are very anharmonic and strongly coupled to(More)
In this study, we assessed the effects of chronic prenatal ethanol exposure (CPEE) on spatial navigation in the water maze, conditioned responding using food-reinforced lever pressing, and amino acid neurotransmitter release from the hippocampus of the adult guinea pig. Pregnant guinea pigs were treated with ethanol (3 g/kg of maternal body weight/day),(More)
The interplay of magnetic interactions, the dimensionality of the crystal structure and electronic correlations in producing superconductivity is one of the dominant themes in the study of the electronic properties of complex materials. Although magnetic interactions and two-dimensional structures were long thought to be detrimental to the formation of a(More)
The discovery of superconductivity at 39 K in magnesium diboride, MgB2, raises many issues, a critical one being whether this material resembles a high-temperature copper oxide superconductor or a low-temperature metallic superconductor in terms of its behaviour in strong magnetic fields. Although the copper oxides exhibit very high transition temperatures,(More)
We present the synthesis and structural characterization of a transition metal oxide hydride, LaSrCoO3H0.7, which adopts an unprecedented structure in which oxide chains are bridged by hydride anions to form a two-dimensional extended network. The metal centers are strongly coupled by their bonding with both oxide and hydride ligands to produce magnetic(More)
The basic magnetic and electronic properties of most binary compounds have been well known for decades. The recent discovery of superconductivity at 39 K in the simple binary ceramic compound magnesium diboride, MgB2, was therefore surprising. Indeed, this material has been known and structurally characterized since the mid 1950s (ref. 2), and is readily(More)
The discovery of superconductivity at 39 K in magnesium diboride offers the possibility of a new class of low-cost, high-performance superconducting materials for magnets and electronic applications. This compound has twice the transition temperature of Nb3Sn and four times that of Nb-Ti alloy, and the vital prerequisite of strongly linked current flow has(More)
We studied the pressure and temperature dependence of the electrical resistivity of the superconducting compound magnesium diboride (MgB(2)). The superconducting transition temperature decreases monotonically with pressure, being parabolic or linear, depending on samples. The rate of decrease under pressure is higher than in conventional superconductors. We(More)