Mathew H. Evans

Learn More
Texture perception is studied here in a physical model of the rat whisker system consisting of a robot equipped with a biomimetic vibrissal sensor. Investigations of whisker motion in rodents have led to several explanations for texture discrimination, such as resonance or stick-slips. Meanwhile, electrophysiological studies of decision-making in monkeys(More)
Whiskered mammals such as rats are experts in tactile perception. By actively palpating surfaces with their whiskers, rats and mice are capable of acute texture discrimination and shape perception. We present a novel system for investigating whisker-object contacts repeatably and reliably. Using an XY positioning robot and a biomimetic artificial whisker we(More)
The paradigm case for robotic mapping assumes large quantities of sensory information which allow the use of relatively weak priors. In contrast, the present study considers the mapping problem for a mobile robot, CrunchBot, where only sparse, local tactile information from whisker sensors is available. To compensate for such weak likelihood information, we(More)
Many rodents use their whiskers to distinguish objects by surface texture. To examine possible mechanisms for this discrimination, data from an artificial whisker attached to a moving robot was used to test texture classification algorithms. This data was examined previously using a template-based classifier of the whisker vibration power spectrum [1].(More)
Motivated by the impact of superresolution methods for imaging, we undertake a detailed and systematic analysis of localization acuity for a biomimetic fingertip and a flat region of tactile skin. We identify three key factors underlying superresolution that enable the perceptual acuity to surpass the sensor resolution: 1) the sensor is constructed with(More)
Future robots may need to navigate where visual sensors fail. Touch sensors provide an alternative modality, largely unexplored in the context of robotic map building. We present the first results in grid based simultaneous localisation and mapping (SLAM) with biomimetic whisker sensors, and show how multi-whisker features coupled with priors about straight(More)
Recent advances in modeling animal perception has motivated an approach of Bayesian perception applied to biomimetic robots. This study presents an initial application of Bayesian perception on an iCub fingertip sensor mounted on a dedicated positioning robot. We systematically probed the test system with five cylindrical stimuli offset by a range of(More)
Rats and other whiskered mammals are capable of making sophisticated sensory discriminations using tactile signals from their facial whiskers (vibrissae). As part of a programme of work to develop biomimetic technologies for vibrissal sensing, including whiskered robots, we are devising algorithms for the fast extraction of object parameters from whisker(More)