Learn More
Myeloproliferative disorders (MPD) are stem cell-derived clonal diseases arising as a consequence of acquired aberrations in c-ABL, Janus-activated kinase 2 (JAK2), and platelet-derived growth factor receptor (PDGFR) that generate oncogenic fusion tyrosine kinases (FTK), including BCR/ABL, TEL/ABL, TEL/JAK2, and TEL/PDGFbetaR. Here, we show that FTKs(More)
Mutations in the BCR/ABL kinase domain play a major role in resistance to imatinib mesylate (IM). We report here that BCR/ABL kinase stimulates reactive oxygen species (ROS), which causes oxidative DNA damage, resulting in mutations in the kinase domain. The majority of mutations involved A/T-->G/C and G/C-->A/T transitions, a phenotype detected previously(More)
BCR/ABL kinase-positive chronic myelogenous leukemia (CML) cells display genomic instability leading to point mutations in various genes including bcr/abl and p53, eventually causing resistance to imatinib and malignant progression of the disease. Mismatch repair (MMR) is responsible for detecting misincorporated nucleotides, resulting in excision repair(More)
The oncogenic BCR/ABL tyrosine kinase induces constitutive DNA damage in Philadelphia chromosome (Ph)-positive leukemia cells. We find that BCR/ABL-induced reactive oxygen species (ROSs) cause chronic oxidative DNA damage resulting in double-strand breaks (DSBs) in S and G(2)/M cell cycle phases. These lesions are repaired by BCR/ABL-stimulated homologous(More)
Chronic myeloid leukemia in chronic phase (CML-CP) is induced by BCR-ABL1 oncogenic tyrosine kinase. Tyrosine kinase inhibitors eliminate the bulk of CML-CP cells, but fail to eradicate leukemia stem cells (LSCs) and leukemia progenitor cells (LPCs) displaying innate and acquired resistance, respectively. These cells may accumulate genomic instability,(More)
Genomic instability is a hallmark of chronic myeloid leukemia in chronic phase (CML-CP) resulting in BCR-ABL1 mutations encoding resistance to tyrosine kinase inhibitors (TKIs) and/or additional chromosomal aberrations leading to disease relapse and/or malignant progression. TKI-naive and TKI-treated leukemia stem cells (LSCs) and leukemia progenitor cells(More)
BCR/ABL-positive leukemia cells accumulated more replication-dependent DNA double-strand breaks (DSBs) than normal counterparts after treatment with cisplatin and mitomycin C (MMC, as assessed by pulse field gel electrophoresis (PFGE) and neutral comet assay. In addition, leukemia cells could repair these lesions more efficiently than normal cells and(More)
Fanconi D2 (FANCD2) is monoubiquitinated on K561 (FANCD2-Ub) in response to DNA double-strand breaks (DSBs) to stimulate repair of these potentially lethal DNA lesions. FANCD2-Ub was upregulated in CD34+ chronic myeloid leukemia (CML) cells and in BCR-ABL1 kinase-positive cell lines in response to elevated levels of reactive oxygen species (ROS) and DNA(More)
The oncogenic BCR/ABL tyrosine kinase facilitates the repair of DNA double-strand breaks (DSBs). We find that after gamma-irradiation BCR/ABL-positive leukemia cells accumulate more DSBs in comparison to normal cells. These lesions are efficiently repaired in a time-dependent fashion by BCR/ABL-stimulated non-homologous end-joining (NHEJ) followed by(More)