Learn More
Calcium is a second messenger in virtually all cells and tissues. Calcium signals in the nucleus have effects on gene transcription and cell growth that are distinct from those of cytosolic calcium signals; however, it is unknown how nuclear calcium signals are regulated. Here we identify a reticular network of nuclear calcium stores that is continuous with(More)
Ca(2+) signals control DNA synthesis and repair, gene transcription, and other cell functions that occur within the nucleus. The nuclear envelope can store Ca(2+) and release it into the nucleus via either the inositol 1,4,5-trisphosphate receptor (InsP3R) or the ryanodine receptor (RyR). Furthermore, many cell types have a reticular network within their(More)
UNLABELLED Multidrug resistance associated protein 2 (Mrp2) is a canalicular transporter responsible for organic anion secretion into bile. Mrp2 activity is regulated by insertion into the plasma membrane; however, the factors that control this are not understood. Calcium (Ca(2+)) signaling regulates exocytosis of vesicles in most cell types, and the type(More)
Angiotensin-(1-7) [Ang-(1-7)] has biological actions that can often be distinguished from those of angiotensin II (Ang II). Recent studies indicate that the effects of Ang-(1-7) are mediated by specific receptor(s). We now report the partial characterization of a new antagonist selective for Ang-(1-7), D-Pro7-Ang-(1-7). D-Pro7-Ang-(1-7) (50 pmol) inhibited(More)
Cytosolic Ca(2+) is a versatile second messenger that can regulate multiple cellular processes simultaneously. This is accomplished in part through Ca(2+) waves and other spatial patterns of Ca(2+) signals. To investigate the mechanism responsible for the formation of Ca(2+) waves, we examined the role of inositol 1,4,5-trisphosphate receptor (InsP3R)(More)
In the heart, cytosolic Ca(2+) signals are well-characterized events that participate in the activation of cell contraction. In contrast, nuclear Ca(2+) contribution to cardiomyocyte function remains elusive. Here, we examined functional consequences of buffering nuclear Ca(2+) in neonatal cardiomyocytes. We report that cardiomyocytes contain a(More)
BACKGROUND & AIMS Nucleoplasmic Ca(2+) regulates cell growth in the liver, but the proteins through which this occurs are unknown. METHODS We used Rapid Subtraction Hybridization (RaSH) to subtract genes in SKHep1 liver cells expressing the Ca(2+) buffer protein parvalbumin (PV) targeted to the nucleus, from genes in cells expressing a mutated form of(More)
Activation of the cytosolic inflammasome machinery is responsible for acute and chronic liver inflammation, but little is known about its regulation. The N-methyl-d-aspartate (NMDA) receptor families are heterotetrameric ligand-gated ion channels that are activated by a range of metabolites, including aspartate, glutamate, and polyunsaturated fatty acids.(More)
BACKGROUND & AIMS Polarity is critical for hepatocyte function. Ca(2+) waves are polarized in hepatocytes because the inositol 1,4,5-trisphosphate receptor (InsP3R) is concentrated in the pericanalicular region, but the basis for this localization is unknown. We examined whether pericanalicular localization of the InsP3R and its action to trigger Ca(2+)(More)
Cytosolic Ca2+ regulates a variety of cell functions, and the spatial patterns of Ca2+ signals are responsible in part for the versatility of this second messenger. The subcellular distribution of the inositol 1,4,5-trisphosphate receptor (IP3R) is thought to regulate Ca2+-signaling patterns but little is known about how the distribution of the IP3R itself(More)