Learn More
Calcium is a second messenger in virtually all cells and tissues. Calcium signals in the nucleus have effects on gene transcription and cell growth that are distinct from those of cytosolic calcium signals; however, it is unknown how nuclear calcium signals are regulated. Here we identify a reticular network of nuclear calcium stores that is continuous with(More)
Ca(2+) signals control DNA synthesis and repair, gene transcription, and other cell functions that occur within the nucleus. The nuclear envelope can store Ca(2+) and release it into the nucleus via either the inositol 1,4,5-trisphosphate receptor (InsP3R) or the ryanodine receptor (RyR). Furthermore, many cell types have a reticular network within their(More)
Cytosolic Ca2+ regulates a variety of cell functions, and the spatial patterns of Ca2+ signals are responsible in part for the versatility of this second messenger. The subcellular distribution of the inositol 1,4,5-trisphosphate receptor (IP3R) is thought to regulate Ca2+-signaling patterns but little is known about how the distribution of the IP3R itself(More)
Activation of the cytosolic inflammasome machinery is responsible for acute and chronic liver inflammation, but little is known about its regulation. The N-methyl-d-aspartate (NMDA) receptor families are heterotetrameric ligand-gated ion channels that are activated by a range of metabolites, including aspartate, glutamate, and polyunsaturated fatty acids.(More)
  • 1